Skip to main content

Advertisement

Log in

Does the eelgrass meadow influence the macrobenthic community structure in Swan Lake, Northern China?

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Seagrass beds provide habitat for a wide array of organisms. Among these, macrobenthos constitute a major group in seagrass bed communities. The effects of seagrass meadows on macrobenthic community structure have been studied in many areas, and have revealed contradictory results regarding the meadow’s effects. In this study, sediment environment and macrobenthic community structure and diversity were investigated in an eelgrass bed and an adjacent unvegetated area in Swan Lake, northern China, from November 2011 to October 2012. Sediment grain size and organic matter did not differ significantly between the two areas. Polychaeta were the most abundant taxon, and herbivores, detritivores, and deposit feeders were the main functional feeding groups. Carnivores were slightly more abundant in the eelgrass bed than in the unvegetated area. Permutational multivariate analysis of variance (PERMANOVA) indicated that the macrobenthic assemblage differed between the two habitats, but analysis of similarities (ANOSIM) did not validate this result. Analysis of similarity percentages (SIMPER) demonstrated that Polychaeta was the largest contributor to dissimilarity between the macrobenthic assemblages; however, diversity was similar throughout the year, and theoretical species richness was equivalent (80 species) between the two areas. Thus, the presence of eelgrass did not affect macrobenthic community structure or diversity in the Swan Lake ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46

    Google Scholar 

  • Barnes RSK (2014) Is spatial uniformity of soft-sediment biodiversity widespread, and if so, over what scales? Mar Ecol Prog Ser 504:147–158

    Article  Google Scholar 

  • Barrio Froján CRS, Kendall MA, Paterson GLJ, Hawkins LE, Nimsantijaroen S, Aryuthaka C (2009) The importance of bare marine sedimentary habitats for maintaining high polychaete diversity and the implications for the design of marine protected areas. Aquat Conserv Mar Freshwat Ecosyst 19(7):748–757

    Article  Google Scholar 

  • Boström C, Bonsdorff E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. J Sea Res 37(1):153–166

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics: 783–791

  • Christoffer B, Anna T, Erik B (2010) Invertebrate dispersal and habitat heterogeneity: expression of biological traits in a seagrass landscape. J Exp Mar Biol Ecol 390(2):106–117

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) RIMER v6: user manual tutorial. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Cummins SP, Roberts DE, Zimmerman KD (2004) Effects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Mar Ecol Prog Ser 266:77–87

    Article  Google Scholar 

  • De La Cruz MJL, Flores JRP, Magramo MM, Madas C, Terunez M (2012) Macrobenthic composition of sea water associated with Seagrass in East and West Portions of the Igang Bay, Nueva Valencia, Guimaras. JPAIR Multidisciplinary Res 7(1)

  • Dissanayake DCT, Stefansson G (2010) Abundance and distribution of commercial sea cucumber species in the coastal waters of Sri Lanka. Aquat Living Resour 23(3):303–313

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65(1):159–174

    Article  Google Scholar 

  • Eyre BD, Ferguson AJP (2002) Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Mar Ecol Prog Ser 229:43–59

    Article  CAS  Google Scholar 

  • Flindt MR, Pardal MÂ, Lillebø AI, Martins I, Marques JC (1999) Nutrient cycling and plant dynamics in estuaries: a brief review. Acta Oecol 20(4):237–248

    Article  Google Scholar 

  • Fonseca MS (1989) Sediment stabilization by Halophila decipiens in comparison to other seagrass. Estuar Coast Shelf Sci 29(5):501–507

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Angel Mateo M, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5(7):505–509

    Article  CAS  Google Scholar 

  • Ha SY, Min W-K, Kim D-S, Shin K-H (2013) Trophic importance of meiofauna to polychaetes in a seagrass (Zostera marina) bed as traced by stable isotopes. J Marine Biol Assoc UK FirstView: 1–7

  • Heck KL, Valentine JF (2006) Plant-herbivore interactions in seagrass meadows. J Exp Mar Biol Ecol 330(1):420–436

    Article  Google Scholar 

  • Heck KL Jr, Carruthers TJB, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW (2008) Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11(7):1198–1210

    Article  Google Scholar 

  • Hemminga MA, Harrison PG, Vanlent F (1991) The balance of nutrient losses and gains in seagrass meadows. Mar Ecol Prog Ser 71(1):85–96

    Article  Google Scholar 

  • Hyndes GA, Lavery PS (2005) Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuar Coast Shelf Sci 63(4):633–643

    Article  CAS  Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM (2015) Diet of worms emended: an update of Polychaete feeding guilds. Annual review of marine science 7:497–520

  • Lebreton B, Richard P, Galois R, Radenac G, Brahmia A, Colli G, Grouazel M, André C, Guillou G, Blanchard GF (2012) Food sources used by sediment meiofauna in an intertidal Zostera noltii seagrass bed: a seasonal stable isotope study. Mar Biol 159(7):1537–1550

    Article  Google Scholar 

  • Leopardas V, Uy W, Nakaoka M (2014) Benthic macrofaunal assemblages in multispecific seagrass meadows of the Southern Philippines: variation among vegetation dominated by different seagrass species. J Exp Mar Biol Ecol 457:71–80

    Article  Google Scholar 

  • Liu J, Zhang P, Guo D, Niu S, Zhang X (2011) Annual change in photosynthetic pigment contents of Zostera marina L. in Swan Lake. Afr J Biotechnol 10(79):18194–18199

    CAS  Google Scholar 

  • Liu X, Zhou Y, Yang H, Ru S (2013) Eelgrass detritus as a food source for the sea cucumber apostichopus japonicus Selenka (Echinidermata: Holothuroidea) in Coastal Waters of North China: an experimental study in flow-through systems. PLoS One 8(3), e58293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luczak C, Janquin MA, Kupka A (1997) Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia 345(1):87–94

    Article  CAS  Google Scholar 

  • Polte P, Schanz A, Asmus H (2005) The contribution of seagrass beds (Zostera noltii) to the function of tidal flats as a juvenile habitat for dominant, mobile epibenthos in the Wadden Sea. Mar Biol 147(3):813–822

    Article  Google Scholar 

  • Qiu T, Zhang L, Zhang T, Yang H (2013) Effects of mud substrate and water current on the behavioral characteristics and growth of the sea cucumber Apostichopus japonicus in the Yuehu lagoon of northern China. Aquac Int 22(2):423–433

    Article  Google Scholar 

  • Rossi F, Baeta A, Marques JOC (2015) Stable isotopes reveal habitat-related diet shifts in facultative deposit-feeders. J Sea Res 95:172–179

    Article  Google Scholar 

  • Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: A bioregional model. J Exp Mar Biol Ecol 350:3–20

  • van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJ (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336(6087):1432–1434

    Article  PubMed  CAS  Google Scholar 

  • van Houte-Howes KSS, Turner SJ, Pilditch CA (2004) Spatial differences in macroinvertebrate communities in intertidal seagrass habitats and unvegetated sediment in three New Zealand estuaries. Estuaries 27(6):945–957

    Article  Google Scholar 

  • Valentine JF, Duffy JE (2006) The central role of grazing in seagrass ecology. Seagrass: Biology, Ecology and Conservation. L. AWD, O. RJ and D. CM. Dordrecht, Springer: 463–501

  • Yang ZD, Li SX (1983) Study on the seagrass system classification. J Shandong Mar Coll 18(4):78–89 (in Chinese, with English abstract)

  • Zhang XM, Zhou Y, Liu P, Wang F, Liu BJ, Liu XJ, Xu Q, Yang HS (2014) Temporal pattern in the bloom-forming macroalgae Chaetomorpha linum and Ulva pertusa in seagrass beds, Swan Lake lagoon, North China. Mar Pollut Bull 89:229–238

  • Zhang XM, Zhou Y, Liu Y, Wang F, Liu XJ, Liu BJ, Yang HS (2015) Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): Implications for restoration and management. Mar Pollut Bull 94:103–113

  • Zhou Y, Liu B, Liu BJ, Liu XJ, Zhang XM, Wang F, Yang HS (2014) Restoring eelgrass (Zostera marina L.) habitats using a simple and effective transplanting technique. PLoS ONE 9(4):e92982

  • Zhou Y, Liu X, Liu B, Liu P, Wang F, Zhang X, Yang H (2015) Unusual pattern in characteristics of the eelgrass Zostera marina L. in a shallow lagoon (Swan Lake), north China: Implications on the importance of seagrass conservation. Aquat Bot 120:178–184

  • Ziegler S, Benner R (1999) Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar Ecol Prog Ser 180:149–160

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science & Technology Basic Work Program (2015FY110600), the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406403), the Natural Science Foundation of China (No. 41406164/41176140/ 30972268), and the National Marine Public Welfare Research Project (No.201305043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou.

Additional information

Communicated by J. M. Weslawski

Qinzeng Xu and Bingjian Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Liu, B. & Zhou, Y. Does the eelgrass meadow influence the macrobenthic community structure in Swan Lake, Northern China?. Mar Biodiv 48, 1337–1344 (2018). https://doi.org/10.1007/s12526-016-0601-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-016-0601-3

Keywords

Navigation