Skip to main content

Advertisement

Log in

Coral reef habitats strongly influence the diversity of macro- and meiobenthos in the Caribbean

  • Caribbean Coral Reefs
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Macro- and meiobenthos contribute substantially to the diversity of marine habitats and should account for a significant fraction of the diversity in coral reefs. The aims of the present study are to characterize macro- and meiobenthic communities in a Caribbean coral reef and to analyze the effects of habitat type on the α-, β-, and γ-diversity of free-living nematodes. Two reef sites with four habitat types each were selected: seagrass bed, bare sand, coral rubble, and algal turf. Habitats within sites were adjacent to each other and characterized by their physical architecture, hydrodynamic regime, and foundation species. The diversity of marine communities was high, with eight phyla represented in the macrobenthos and 18 phyla in the meiobenthos. The structure of macrobenthos was strongly associated with the habitat type. This relationship was weaker for meiobenthos, which is likely related to ecological drift, hydrodynamic regime, and macrobenthic influence. The nematode species richness was high at both studied scales: α-diversity ranged from 31 to 83 species per habitat and γ-diversity for the whole reef was 156 ± 4 species. The nematode assemblages consisted of few dominant and many rare species, which is typical of hyperdiverse faunas. The β-diversity was large in the reef with few shared species and the presence of distinctive nematode assemblages adapted to the physical architecture and food availability of each habitat. The results imply that the physical structure and heterogeneity of the coral reef habitats are important for maintaining the high diversity of small invertebrates, especially regarding the richness and turnover of nematode species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alongi DM (1986) Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia. Austr J Mar Freshw Res 37:609–619

    Article  Google Scholar 

  • Alongi DDM (1989) The role of soft-bottom benthic communities in tropical mangrove and coral reef ecosystems. Crit Rev Aquat Sci 1:243–280

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke RK (2008) Permanova+ for Primer: guide to software and statistical methods. PRIMER-E Ltd. Plymouth

    Google Scholar 

  • Ansari ZA, Parulekar AH (1994) Meiobenthos in the sediments of seagrass meadows of Lakshadweep atolls, Arabian Sea. Vie Milieu 44:185–190

    Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202

    Article  CAS  PubMed  Google Scholar 

  • Armenteros M, Creagh B, González-Sansón G (2009) Distribution patterns of the meiofauna in coral reefs from the NW shelf of Cuba. Rev Invest Mar Univ Habana 30:37–43

    Google Scholar 

  • Armenteros M, Ruiz-Abierno A, Sosa Y, Pérez-García JA (2012) Habitat heterogeneity effects on macro- and meiofauna (especially nematodes) in Punta Francés coral reef (SW Cuban Archipelago). Rev Invest Mar Univ Habana 32:50–61

    Google Scholar 

  • Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) (2014) Marine community ecology and conservation. Sinauer Associates, Sunderland

    Google Scholar 

  • Boucher G (1997) Structure and biodiversity of nematode assemblages in the SW lagoon of New Caledonia. Coral Reefs 16:177–186

    Article  Google Scholar 

  • Boucher G, Clavier J (1990) Contribution of benthic biomass to overall metabolism in New Caledonia lagoon sediments. Mar Ecol Prog Ser 64:271–280

    Article  CAS  Google Scholar 

  • Bouchet VMP, Sauriau PG, Debenay JP, Mermillod-Blondin F, Schmidt S, Amiard JC, Dupas B (2009) Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: First insight from axial tomodensitometry. J Exp Mar Biol Ecol 371:20–33

    Article  Google Scholar 

  • Caballero-Aragón H, Alcolado PM, Rey-Villiers N, Perera-Valderrama S, González-Méndez J (2016) Coral communities condition in varying wave exposure: the gulf of Cazones, Cuba. Rev Biol Trop 64:95–109

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. Home page: http://purl.oclc.org/estimates

  • Curini-Galletti M, Artois T, Delogu V, De Smet WH, Fontaneto D, Jondelius U, Leasi F, Martínez A, Meyer-Wachsmuth I, Nilsson KS, Tongiorgi P, Worsaae K, Todaro MA (2012) Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS One 7:e33801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jesús-Navarrete A (2007) Nematodos de los arrecifes de Isla Mujeres y Banco Chinchorro, Quintana Roo, México. Rev Biol Mar Oceanogr 42:193–200

    Article  Google Scholar 

  • De Troch M, Raes M, Muthumbi A, Gheerardyn H, Vanreusel A (2008) Spatial diversity of nematode and copepod genera of the coral degradation zone along the Kenyan coast, including a test for the use of higher-taxon surrogacy. Afr J Mar Sci 30:25–33

    Article  Google Scholar 

  • Derycke S, Backeljau T, Moens T (2013) Dispersal and gene flow in free-living marine nematodes. Front Zool 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaneto D, Flot J-F, Tang CQ (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar Biodiv 45:433–451

    Article  Google Scholar 

  • Frouin P, Hutchings P (2001) Macrobenthic communities in a tropical lagoon (Tahiti, French Polynesia, central Pacific). Coral Reefs 19:277–285

    Article  Google Scholar 

  • Gamenick I, Giere O (1994) The microdistribution of coral sand meiofauna affected by water currents. Vie Milieu 44:93–100

    Google Scholar 

  • Gerrodette T (2011) Inference without significance: measuring support for hypotheses rather than rejecting them. Mar Ecol 32:404–418

    Article  Google Scholar 

  • Gheerardyn H, de Troch M, Ndaro SGM, Raes M, Vincx M, Vanreusel A (2008) Community structure and microhabitat preferences of harpacticoid copepods in a tropical reef lagoon (Zanzibar Island, Tanzania). J Mar Biol Assoc UK 88:747–758

    Article  Google Scholar 

  • Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, Berlin

    Google Scholar 

  • Gittenberger A, Draisma SG, Arbi UY, Langenberg V, Erftemeijer PL, Tuti Y, Hoeksema BW (2015) Coral reef organisms as bioregion indicators off Halmahera, Moluccas, Indonesia. Aquat Conserv Mar Freshw Ecosyst 25:743–755

    Article  Google Scholar 

  • Gobin JF (2007) Free-living marine nematodes of hard bottom substrates in Trinidad and Tobago, West Indies. Bull Mar Sci 81:73–84

    Google Scholar 

  • Gobin JF, Warwick RM (2006) Geographical variation in species diversity: a comparison of marine polychaetes and nematodes. J Exp Mar Biol Ecol 330:234–244

    Article  Google Scholar 

  • Gómez O, Ibarzábal DR, Silva A (1980) Evaluación cuantitativa de bentos en la región suroccidental de Cuba. Informe Científico-Técnico Instituto de Oceanología 149:1–25

    Google Scholar 

  • Gray JS, Elliott M (2009) Ecology of marine sediments. Oxford University Press, Oxford

    Google Scholar 

  • Guzmán HM, Obando VL, Cortés J (1987) Meiofauna associated with a Pacific coral reef in Costa Rica. Coral Reefs 6:107–112

    Article  Google Scholar 

  • Hall MO, Bell SS (1993) Meiofauna on the seagrass Thalassia testudinum: population characteristics of harpacticoid copepods and associations with algal epiphytes. Mar Biol 116:137–146

    Article  Google Scholar 

  • Hansen LA, Alongi DM, Moriarty DJW, Pollard PC (1987) The dynamics of benthic microbial communities at Davies Reef, central Great Barrier Reef. Coral Reefs 6:63–70

    Article  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489

    Google Scholar 

  • Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol Annu Rev 21:67–175

    Google Scholar 

  • Hull SL (1997) Seasonal changes in diversity and abundance of ostracods on four species of intertidal algae with differing structural complexity. Mar Ecol Prog Ser 161:71–182

    Article  Google Scholar 

  • Ibarzábal DR (1985) Distribución de los poliquetos bentónicos en el área de Punta del Este, Isla de la Juventud, Cuba. Rep Inv Inst Oceanol 33:3–31

    Google Scholar 

  • Klumpp DW, McKinnon AD, Mundy CN (1988) Motile cryptofauna of a coral reef: abundance, distribution and trophic potential. Mar Ecol Prog Ser 45:95–108

    Article  Google Scholar 

  • Logan D, Townsend KA, Townsend K, Tibbetts IR (2008) Meiofauna sediment relations in leeward slope turf algae of Heron Island reef. Hydrobiologia 610:269–276

    Article  Google Scholar 

  • López-Cánovas CI, Lalana R (2001) Benthic meiofauna distribution at three coral reefs from SW of Cuba. Rev Invest Mar Univ Habana 22:199–204

    Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford

    Google Scholar 

  • Nacorda HME, Yap HT (1996) Macroinfaunal biomass and energy flow in a shallow reef flat of the northwestern Philippines. Hydrobiologia 341:37–49

    Article  CAS  Google Scholar 

  • Nash KL, Graham NAJ, Jennings S, Wilson SK, Bellwood DR (2016) Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J Appl Ecol 53:646–655

    Article  Google Scholar 

  • Netchy K, Hallock P, Lunz KS, Daly KL (2016) Epibenthic mobile invertebrate diversity organized by coral habitat in Florida. Mar Biodivers 46:451–463

    Article  Google Scholar 

  • Netto SA, Attrill MJ, Warwick RM (1999a) The effect of a natural water-movement related disturbance on the structure of meiofauna and macrofauna communities in the intertidal sand flat of Rocas Atoll (NE, Brazil). J Sea Res 42:291–302

    Article  Google Scholar 

  • Netto SA, Warwick RM, Attrill MJ (1999b) Meiobenthic and macrobenthic community structure in carbonate sediments of Rocas Atoll (North-east, Brazil). Estuar Coast Shelf Sci 48:39–50

    Article  CAS  Google Scholar 

  • Ólafsson E (2003) Do macrofauna structure meiofauna assemblages in marine soft-bottoms? a review of experimental studies. Vie Milieu 53:249–265

    Google Scholar 

  • Ott J, Bright M, Bulgheresi S (2004) Symbioses between marine nematodes and sulfur-oxidizing chemoautotrophic bacteria. Symbiosis 36:103–126

    CAS  Google Scholar 

  • Pavlyuk ON, Trebukhova JA (2006) Meiobenthos in Nha Trang Bay of the South China Sea (Vietnam). Ocean Sci J 41:139–148

    Article  Google Scholar 

  • Pérez-García JA, Ruiz-Abierno A, Armenteros M (2015) Does morphology of host marine macroalgae drive the ecological structure of epiphytic meiofauna? J Mar Biol Oceanogr 4:1

    Google Scholar 

  • Pfannkuche O, Thiel H (1988) Sample processing. In: Thiel H, Higgins RP (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp 134–145

    Google Scholar 

  • Raes M, De Troch M, Ndaro SGM, Muthumbi A, Guilini K, Vanreusel A (2007) The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar. Coral Reefs 26:113–126

    Article  Google Scholar 

  • Raes M, Decraemer W, Vanreusel A (2008) Walking with worms: coral-associated epifaunal nematodes. J Biogeogr 35:2207–2222

    Article  Google Scholar 

  • Riddle MJ (1988) Patterns in the distribution of macrofaunal communities in coral reef sediments on the central Great Barrier Reef. Mar Ecol Prog Ser 47:281–292

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

  • Semprucci F, Colantoni P, Baldelli G, Rocchi M, Balsamo M (2010) The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Mar Ecol 31:592–607

    Article  Google Scholar 

  • Semprucci F, Colantoni P, Sbrocca C, Baldelli G, Rocchi M, Balsamo M (2011) Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). J Mar Syst 87:208–215

    Article  Google Scholar 

  • Semprucci F, Colantoni P, Sbrocca C, Baldelli G, Balsamo M (2014) Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo lagoon (Maldives, Indian Ocean). J Mar Biol Assoc UK 94:1377–1385

    Article  Google Scholar 

  • Sharma J, Baguley J, Bluhm BA, Rowe G (2011) Do meio- and macrobenthic nematodes differ in community composition and body weight trends with depth? PLoS One 6:e14491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St. John J, Jones GP, Sale PF (1989) Distribution and abundance of soft-sediment meiofauna and a predatory goby in a coral reef lagoon. Coral Reefs 8:51–57

    Article  Google Scholar 

  • Tarjan AC (1980) An illustrated guide to the marine nematodes. Institute of Food and Agricultural Sciences. University of Florida

  • Vellend M (2010) Conceptual synthesis in community ecology. Quarter Rev Biol 85:183–206

    Article  Google Scholar 

  • Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, pp 187–195

    Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes. Pt III. Monhysterids, vol 53. The Linnean Society of London and The Estuarine and Coastal Sciences Association, Shrewsbury

    Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • WoRMS Editorial Board (2016) World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2016. doi:10.14284/170

Download references

Acknowledgments

We would like to thank Abel Valdivia and Jose Andrés Pérez for the revision and helpful discussions of an early version of the manuscript. We also thank the three anonymous referees for their valuable comments on an earlier draft of this paper. The field expeditions were funded in the framework of Operation Wallacea Cuba 2009 and 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maickel Armenteros.

Additional information

Communicated by B. W. Hoeksema

Electronic supplementary material

Below are the links to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 18 kb)

ESM 3

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Abierno, A., Armenteros, M. Coral reef habitats strongly influence the diversity of macro- and meiobenthos in the Caribbean. Mar Biodiv 47, 101–111 (2017). https://doi.org/10.1007/s12526-016-0553-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-016-0553-7

Keywords

Navigation