Skip to main content

Advertisement

Log in

Obstacles to molecular species identification in sea anemones (Hexacorallia: Actiniaria) with COI, a COI intron, and ITS II

  • Short Communication
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

DNA barcoding has been successfully applied to a very large number of taxa, but remains problematic for basal diploblasts, and debates about suitable molecular markers are ongoing. Sea anemones (Anthozoa: Hexacorallia: Actiniaria) populate most any marine environment and often play an irreplaceable role as hosts to other animals. Three genetic markers were tested to assess their utility for molecular species identification in members of the Actiniaria, namely the cytochrome oxidase subunit I (COI), a COI Intron with a Homing Endonuclease Gene (HEG), and the Internal Transcribed Spacer II (ITS II). Both the power of COI and the COI Intron to distinguish species is limited by events of very low inter-specific sequence differences and not by high intra-specific diversity. This finding implies that more comprehensive taxon sampling will not resolve this problem and other markers need to be investigated in several families. Results should discourage the use of ITS II as alternative to COI for barcoding in Actiniarians, since it shows similar limitations to COI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig 3

References

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Clare EL, Burton KL, Engstrom MD, Eger JL, Herbert PDN (2007) DNA barcoding of neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7:184–190

    Article  CAS  Google Scholar 

  • Concepcion GT, Crepeau MW, Wagner D, Kahng SE, Toonen RJ (2008) An alternative to ITS, a hypervariable, single-copy nuclear intron in corals, and its use in detecting cryptic species within the octocoral genus Carijoa. Coral Reefs 27:323–336

    Article  Google Scholar 

  • Diekmann OE, Bak RPM, Stam WT, Olsen JL (2001) Molecular genetic evidence for probably reticulate speciation on the coral genus Madracis from a Caribbean fringing reef slope. Mar Biol 139:221–233

    Article  CAS  Google Scholar 

  • Flot JF, Licuanan WY, Nakano Y, Payri C, Cruaud C, Tillier S (2008) Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 27:789–794

    Article  Google Scholar 

  • Flot J-F, Dahl M, André C (2013) Lophelia pertusa corals from the Ionian and Barents seas share identical nuclear ITS2 and near-identical mitochondrial genome sequences. BMC Res Notes 6:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci U S A 96:13880–13885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard MR, Leigh J, Roger AJ, Pemberton AJ (2006) Invasion and persistence of a selfish gene in the Cnidaria. PLoS One 1:e3

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hajbabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 103:968–971

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol 270:313–322

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol 270:S96–S99

    Article  CAS  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101:14812–14817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Meier R, Todd PA, Loke MC (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174

    Article  CAS  PubMed  Google Scholar 

  • Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences assessing relationships among zooxanthellae and corals. Proc 8th Int Coral Reef Symp 2:1559–1602

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavmurthy S, Yang S, Alamaru A, Chuang Y, Pichon M, Obura D, Fontana S, De Palmas S, Stefani F, Benzoni F, MacDonald A, Noreen AME, Chen C, Wallace CC, Pillay RM, Denis V, Amri AY, Reimer JD, Mezaki T, Sheppard C, Loya Y, Abelson A, Mohammed MS, Baker AC, Mostafavi PG, Suharsono BA, Chen CA (2013) DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci Rep 3:1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) Mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97

    Article  CAS  PubMed  Google Scholar 

  • Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2:e354

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Oliverio M, Barco A, Modica MV, Richter A, Mariottini P (2009) Ecological barcoding of corallivory by second internal transcribed spacer sequences: hosts of coralliophiline gastropods detected by the cnidarian DNA in their stomach. Mol Ecol Resour 9:94–103

    Article  CAS  PubMed  Google Scholar 

  • Reimer JD, Takishita K, Ono S, Tsukahara J, Maruyama T (2007) Molecular evidence suggesting interspecific hybridization in Zoanthus spp. (Anthozoa: Hexacorallia). Zool Sci 24:346–359

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shearer TL, Coffroth MA (2006) Genetic identification of Caribbean scleractinian coral recruits at the Flower Garden Banks and the Florida Keys. Mar Ecol Prog Ser 306:133–142

    Article  CAS  Google Scholar 

  • Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8:247–255

    Article  CAS  PubMed  Google Scholar 

  • Shearer TL, Van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    Article  CAS  PubMed  Google Scholar 

  • Sinniger F, Reimer JD, Pawlowski J (2008) Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zool Sci 25:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B Biol Sci 360:1847–1857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the institutions and individuals that have made our study possible: German Federal Ministry of Education and Research (BMBF) (grant no. 03 F 0390B and 03 F 0472B), which funded this study in the framework of the SPICE project (Science for the Protection of Indonesian Coastal Marine Ecosystems); Agus Nuryanto (Jenderal Soedirman University, Indonesia) and Janne Timm (University of Bremen, Germany) for support during collection of samples; colleagues from Hasanuddin University (Indonesia) for logistical support during field work; The SPICE project is conducted and permitted under the governmental agreement between the BMBF and the Indonesian Ministry for Research and Technology (RISTEK), Indonesian Institute of Sciences (LIPI), Indonesian Ministry of Maritime Affairs and Fisheries (DKP), and Indonesian Agency for the Assessment and Application of Technology (BPPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina A. Dohna.

Additional information

Communicated by P. Martinez Arbizu

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 1526 kb)

Fig. S2

(DOC 1428 kb)

Table S1

(DOC 58 kb)

Table S2

(DOC 59 kb)

Table S3

(DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dohna, T.A., Kochzius, M. Obstacles to molecular species identification in sea anemones (Hexacorallia: Actiniaria) with COI, a COI intron, and ITS II. Mar Biodiv 46, 291–297 (2016). https://doi.org/10.1007/s12526-015-0329-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-015-0329-5

Keywords

Navigation