Skip to main content
Log in

A deep sea community at the Kebrit brine pool in the Red Sea

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anschutz P, Blanc G, Chatin F et al (1999) Hydrographic changes during 20 years in the brine-filled basins of the Red Sea. Deep Sea Res Part Oceanogr Res Pap 46:1779–1792. doi:10.1016/S0967-0637(99)00019-9

    Article  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433. doi:10.1111/j.1758-2229.2011.00264.x

    Article  PubMed  Google Scholar 

  • Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nat Phys Sci 240:153–158. doi:10.1038/physci240153a0

    Article  Google Scholar 

  • Baco AR, Smith CR (2003) High species richness in deep-sea chemoautotrophic whale skeleton communities. Mar Ecol Prog Ser 260:109–114

    Article  Google Scholar 

  • Baker MC, Ramirez-Llodra EZ, Tyler PA et al (2010) Biogeography, ecology, and vulnerability of chemosynthetic ecosystems in the deep sea. In: McIntyre AD (ed) Life worlds oceans. Wiley-Blackwell, pp 161–182

  • Batang ZB, Papathanassiou E, Al-Suwailem A et al (2012) First discovery of a cold seep on the continental margin of the central Red Sea. J Mar Syst 94:247–253. doi:10.1016/j.jmarsys.2011.12.004

    Article  Google Scholar 

  • Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Mineral Deposita 26:217–227. doi:10.1007/BF00209261

    Article  CAS  Google Scholar 

  • Braile LW, Keller GR, Wendlandt RF et al (2006) Chapter 5 The east african rift system. In: Olsen KH (ed) Dev Geotecton. Elsevier, pp 213–231, I–III

  • Carlier A, Ritt B, Rodrigues CF et al (2010) Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities. Mar Biol 157:2545–2565. doi:10.1007/s00227-010-1518-1

    Article  CAS  Google Scholar 

  • Coleman RG (1993) Geological evolution of the Red Sea. Oxford monographs on geology and geophysics. Oxford University Press, New York, 186 pp

    Google Scholar 

  • Copley JTP, Young CM (2006) Seasonality and zonation in the reproductive biology and population structure of the shrimp Alvinocaris stactophila (Caridea: Alvinocarididae) at a Louisiana Slope cold seep. Mar Ecol Prog Ser 315:199–209. doi:10.3354/meps315199

    Article  Google Scholar 

  • Cordes EE, Carney SL, Hourdez S et al (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Res Part Oceanogr Res Pap 54:637–653. doi:10.1016/j.dsr.2007.01.001

    Article  Google Scholar 

  • Cuomo MC (1985) Sulphide as a larval settlement cue for Capitella sp I. Biogeochemistry 1:169–181. doi:10.1007/BF02185040

    Article  Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Degens ET, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea—geochemical and geophysical account. Springer, New York, 600 pp

    Book  Google Scholar 

  • Dover CLV, Trask JL (2000) Diversity at deep-sea hydrothermal vent and intertidal mussel beds. Mar Ecol Prog Ser 195:169–178. doi:10.3354/meps195169

    Article  Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740. doi:10.1038/nrmicro1992

    Article  CAS  PubMed  Google Scholar 

  • Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) Vent Seep Biota. Springer, Dordrecht, pp 137–167

    Chapter  Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218. doi:10.1007/s002030050762

    Article  CAS  PubMed  Google Scholar 

  • Eder W, Schmidt M, Koch M et al (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine–seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763. doi:10.1046/j.1462-2920.2002.00351.x

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb V, Orsi W, Leslin C et al (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13:151–167. doi:10.1007/s00792-008-0206-2

    Article  PubMed  Google Scholar 

  • Faber E, Botz R, Poggenburg J, Schmidt M, Stoffers P, Hartmann M (1998) Methane in Red Sea brines. Org Geochem 29:363–379

    Article  CAS  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293. doi:10.1038/293291a0

    Article  CAS  Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine-invertebrates. Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  • Galkin SV, Goroslavskaya EI (2010) Bottom fauna associated with Bathymodiolus azoricus (Mytilidae) mussel beds in the hydrothermal fields of the Mid-Atlantic Ridge. Oceanology 50:51–60. doi:10.1134/S0001437010010066

    Article  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330. doi:10.1016/S0025-3227(97)00055-8

    Article  CAS  Google Scholar 

  • Henneke E, De Lange GJ (1990) The distribution of DOC and POC in the water column and brines of the Tyro and Bannock Basins. Mar Chem 31:113–122. doi:10.1016/0304-4203(90)90033-9

    Article  CAS  Google Scholar 

  • LaRock PA, Lauer RD, Schwarz JR et al (1979) Microbial biomass and activity distribution in an anoxic, hypersaline basin. Appl Environ Microbiol 37:466–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin LA, Ziebis W, Mendoza GF et al (2003) Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Mar Ecol Prog Ser 265:123–139. doi:10.3354/meps265123

    Article  CAS  Google Scholar 

  • McLean JH (1992) Cocculiniform limpets (Cocculinidae and Pyropeltidae) living on whale bone in the deep sea off California. J Molluscan Stud 58:401–414. doi:10.1093/mollus/58.4.401

    Article  Google Scholar 

  • Monin AS, Litvin VM, Podrazhansky AM et al (1982) Red sea submersible research expedition. Deep Sea Res Part Oceanogr Res Pap 29:361–373. doi:10.1016/0198-0149(82)90100-5

    Article  Google Scholar 

  • Mullineaux L, Mills S, Sweetman A et al (2005) Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Mar Ecol Prog Ser 293:1–16. doi:10.3354/meps293001

    Article  Google Scholar 

  • Oliver PG, Vestheim H, Antunes A, Kaartvedt S (in press) Systematics, functional morphology and distribution of a bivalve (Apachecorbula muriatica gen. et sp. nov.) from the rim of the “Valdivia Deep” brine pool in the Red Sea. J Mar Biol UK. doi: 10.1017/S0025315414001234

  • Pautot G, Guennoc P, Coutelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature 310:133–136. doi:10.1038/310133a0

    Article  CAS  Google Scholar 

  • Pfannkuche O (1993) Benthic standing stock and metabolic activity in the bathyal Red Sea from 17°N to 27°N. Mar Ecol 14:67–79. doi:10.1111/j.1439-0485.1993.tb00365.x

    Article  Google Scholar 

  • Ritt B, Sarrazin J, Caprais J-C et al (2010) First insights into the structure and environmental setting of cold-seep communities in the Marmara Sea. Deep Sea Res Part Oceanogr Res Pap 57:1120–1136. doi:10.1016/j.dsr.2010.05.011

    Article  CAS  Google Scholar 

  • Ryan WBF, Thorndike EM, Ewing M, Ross DA (1969) Suspended matter in the Red Sea brines and its detection by light scattering. In: Degens ET, Ross DA (eds) Hot brines recent heavy met. Depos Red Sea. Springer, Berlin, pp 153–157

    Chapter  Google Scholar 

  • Sasaki T, Warén A, Kano Y et al (2010) Gastropods from recent hot vents and cold seeps: systematics, diversity and life strategies. In: Kiel S (ed) Vent Seep Biota. Springer, Netherlands, pp 169–254

    Chapter  Google Scholar 

  • Scholten JC, Stoffers P, Garbe-Schönberg D, Moammar M (2000) Hydrothermal mineralization in the Red Sea. CRC Mar Sci Ser 17

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II Top Stud Oceanogr 45:517–567. doi:10.1016/S0967-0645(97)00074-X

    Article  Google Scholar 

  • Stock A, Breiner H-W, Pachiadaki M et al (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34. doi:10.1007/s00792-011-0401-4

    Article  PubMed  Google Scholar 

  • Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166. doi:10.1038/205165a0

    Article  CAS  Google Scholar 

  • Taylor JD, Glover EA (2010) Chemosymbiotic bivalves. In: Kiel S (ed) Vent Seep Biota. Springer, Netherlands, pp 107–135

    Chapter  Google Scholar 

  • Tsutsumi H, Wainright S, Montani S et al (2001) Exploitation of a chemosynthetic food resource by the polychaete Capitella sp. I. Mar Ecol Prog Ser 216:119–127. doi:10.3354/meps216119

    Article  CAS  Google Scholar 

  • Vermeij GJ (1993) A natural history of shells. Princeton University Press, Princeton, 207 pp

    Google Scholar 

  • Warén A, Bouchet P (1989) New gastropods from East Pacific hydrothermal vents. Zool Scr 18:67–102. doi:10.1111/j.1463-6409.1989.tb00124.x

    Article  Google Scholar 

  • Wishner KF (1980) The biomass of the deep-sea benthopelagic plankton. Deep Sea Res Part Oceanogr Res Pap 27:203–216. doi:10.1016/0198-0149(80)90012-6

    Article  Google Scholar 

  • Young RA, Ross DA (1974) Volcanic and sedimentary processes in the Red Sea axial trough. Deep Sea Res Oceanogr Abstr 21:289–297. doi:10.1016/0011-7471(74)90100-4

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to all help from the other Leg 4 Red Sea Expedition 2013 KAUST participants; André Antunes, Ioannis Georgakakis, Thor A. Klevjer, Perdana Karim Prihartato, Anders Røstad, and Ingrid Solberg. The Red Sea Expedition 2013 was sponsored by KAUST. Leonidas Manousakis and Manolis Kalergis from Hellenic Centre for Marine Research (HCMR) assisted in ROV operations. The captain and crew of the R/V Aegaeo provided support during the entire cruise. Ohoud Mohammed Eid Alharbi assisted with the electron microscopy. We solicited taxonomic opinions from Anders Warén and Yasunori Kano on gatropods, Graham Oliver on bivalves, and Fran Saborido-rey on fish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hege Vestheim.

Additional information

Communicated by P. Martinez Arbizu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vestheim, H., Kaartvedt, S. A deep sea community at the Kebrit brine pool in the Red Sea. Mar Biodiv 46, 59–65 (2016). https://doi.org/10.1007/s12526-015-0321-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-015-0321-0

Keywords

Navigation