Skip to main content

Advertisement

Log in

Possible drivers of biodiversity generation in the Siphonaria of southeastern Australia

  • Original Article
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

An inter-species approach may reveal insights into biodiversity that are not available by studying single-species phylogeography. Here, we have used this approach to investigate biodiversity generation in Siphonaria, a prominent component of the intertidal fauna of a biogeographically complex region of southeastern Australia. We collected DNA sequences of cytochrome c oxidase (COI) and internal transcribed spacer 2 (ITS-2) from the five species of Siphonaria in the region to study factors such as contemporary hydrology and historical geographic barriers that are known to be important in intra-species phylogeography. Except for the closely-related Siphonaria funiculata and S. tasmanica, the genetic divergences between studied species were deep and could not be related directly to intra-regional factors. In particular, isolation induced by the Bassian Isthmus landbridge at glacial maxima, which is the principal known historical barrier within southeastern Australia, has few detectable effects. Hydrological currents have apparently played only minor roles in determining the contemporary ranges of species or clades within them. Notably, species’ range limits in southern NSW are maintained despite the long-term flow of the East Australian Current. ITS-2 sequences were difficult to interpret phylogeographically as genetic divergence within species was absent for most taxa. All species had considerable numbers of low frequency COI haplotypes between which genetic divergence was shallow. Recently derived disequilibrium was revealed as an important driver of intra-species diversity for this gene. Inter-species comparisons favour demographic expansion over selective sweeps as explanations of the disequilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayre DJ, Minchinton TE, Perrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 18:1887–1903

    Article  PubMed  CAS  Google Scholar 

  • Baird ME, Timko PG, Suthers IM, Middleton JH (2006) Coupled physical-biological modelling study of the East Australian Current with idealised wind forcing. Part I: Biological model intercomparison. J Mar Syst 59:249–270

    Article  Google Scholar 

  • Bennett I, Pope E (1953) Intertidal zonation of the exposed rocky shores of Victoria, together with a rearrangement of the biogeographical provinces of temperate Australian shores. Aust J Mar Freshw Res 4:105–159

    Article  Google Scholar 

  • Bird CE, Holland BS, Bowen BW, Toonen RJ (2007) Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories. Mol Ecol 16:3173–3186

    Article  PubMed  CAS  Google Scholar 

  • Bird CE, Holland BS, Bowen BW, Toonen RJ (2011) Diversification of sympatric broadcast-spawning limpets (Cellana spp.) within the Hawaiian archipelago. Mol Ecol 20:2128–2141

    Article  PubMed  Google Scholar 

  • Bostock HC, Opdyke BN, Gagan MK, Kiss AE, Fifield LK (2006) Glacial/interglacial changes in the East Australian current. Clim Dynamics 26:645–659

    Article  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Colgan DJ, da Costa P (2009) DNA haplotypes cross species and biogeographic boundaries in estuarine hydrobiid snails of the genus Tatea. Mar Freshw Res 60:861–872

    Article  CAS  Google Scholar 

  • Colgan DJ, Schreiter S (2011) Extrinsic and intrinsic influences on the phylogeography of the Austrocochlea constricta species group. J Exp Mar Biol Ecol 397:44–51

    Article  Google Scholar 

  • Colgan DJ, Middelfart P, Golding R, Criscione F (2009) Monitoring the response of NSW bivalves to climate change. Final report by the Australian Museum to the Environmental Trust for Grant 2008/RD/0071

  • Crandall ED, Sbrocco EJ, DeBoer TS, Barber PH, Carpenter KE (2012) Expansion dating: calibrating molecular clocks in marine species from expansions onto the Sunda Shelf following the last glacial maximum. Mol Biol Evol 29:707–719

    Article  PubMed  CAS  Google Scholar 

  • Creese RG (1980) Reproductive cycles and fecundities of two species of Siphonaria (Mollusca: Pulmonata) in south-eastern Australia. Aust J Mar Freshw Res 31:37–47

    Article  Google Scholar 

  • Dawson MN (2001) Phylogeography in coastal marine animals: a solution from California? J Biogeog 28:723–736

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. Advance Access published February 25, 2012

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Fraser CI, Spencer HG, Waters JM (2009) Glacial oceanographic contrasts explain phylogeography of Australian bull kelp. Mol Ecol 18:2287–2296

    Article  PubMed  Google Scholar 

  • Fu Y-X (1996) New statistical tests of neutrality for DNA samples from a population. Genetics 143:557–570

    PubMed  CAS  Google Scholar 

  • Golding RE, Colgan DJ, Nelmes G, Reutelshöfer T (2011) Sympatry and allopatry in the deeply divergent mitochondrial DNA clades of the estuarine pulmonate gastropod genus Phallomedusa (Mollusca, Gastropoda). Mar Biol 158:1259–1269

    Article  CAS  Google Scholar 

  • Goldstien SJ, Schiel DR, Gemmell NJ (2006) Comparative phylogeography of coastal limpets across a marine disjunction in New Zealand. Mol Ecol 15:3259–3268

    Article  PubMed  CAS  Google Scholar 

  • Grande C, Templado J, Cervera JL, Zardoya R (2004) Molecular phylogeny of Euthyneura (Mollusca: Gastropoda). Mol Biol Evol 21:303–313

    Article  PubMed  CAS  Google Scholar 

  • Grove SJ, Kershaw RC, Smith BJ, Turner E (2006) A systematic list of the marine molluscs of Tasmania. Queen Victoria Museum and Art Gallery, Occasional Paper 8, Launceston

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellberg ME, Vacquier VD (1999) Rapid evolution of fertilization selectivity and lysine cDNA sequences in teguline gastropods. Mol Biol Evol 16:839–848

    Article  PubMed  CAS  Google Scholar 

  • Hellberg ME, Balch DP, Roy K (2001) Climate-driven range expansion and morphological evolution in a marine gastropod. Science 192:1707–1710

    Article  Google Scholar 

  • Hodgson AN (1999) The biology of siphonariid limpets (Gastropoda: Pulmonata). Oceanogr Mar Biol 37:245–314

    Google Scholar 

  • Hubendick B (1946) Systematic monograph of the Patelliformia. Kungliga Sven Vetenskap Handl 23:1–93

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001).MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Google Scholar 

  • Jenkins BW (1981) Siphonaria funiculata Reeve (Siphonariidae, Pulmonata): a redescription making S. virgulata Hedley a geographical variant of S. funiculate. J Malacol Soc Australas 5:1–15

    Google Scholar 

  • Jenkins BW (1982) Redescriptions and relationship of Siphonaria zelandica Quoy and Gaimard to S. australis Quoy and Gaimard with a description of S. propria sp. nov. (Mollusca: Pulmonata: Siphonariidae). J Malacol Soc Australas 6:1–35

    Google Scholar 

  • Jenkins BW (1984) A new siphonariid (Mollusca: Pulmonata) from south-western Australia. J Malacol Soc Australas 6:113–123

    Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics 6:13. v.3.23

    Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 426:4015–4026

    Article  Google Scholar 

  • Kameda Y, Kawakita A, Kato M (2007) Cryptic genetic divergence and associated morphological differentiation in the arboreal land snail Satsuma (Luchuhadra) largillierti (Camaenidae) endemic to the Ryukyu Archipelago, Japan. Mol Phylogenet Evol 45:519–533

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Knox GA (1980) Plate tectonics and the evolution of intertidal and shallow-water benthic biotic distribution patterns of the southwest Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 31:267–297

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Ó’Foighil D (2005) Placing the Floridian marine genetic disjunction into a regional evolutionary context using the “scorched mussel” Brachidontes exustus species complex. Evolution 59:2139–2358

    PubMed  CAS  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20:PA1003

    Google Scholar 

  • Macpherson JH, Gabriel CJ (1962) Marine molluscs of Victoria. Melbourne University Press, Melbourne

    Google Scholar 

  • McAlpine D (1952) Notes on some Siphonariidae. Proc R Zool Soc NSW 1952:36–42

    Google Scholar 

  • McArthur AG, Koop BF (1999) Partial 28S rDNA sequences and the antiquity of the hydrothermal vent endemic gastropods. Mol Phylogenet Evol 13:255–274

    Article  PubMed  CAS  Google Scholar 

  • Murray-Wallace CV (2002) Pleistocene coastal stratigraphy, sea-level highstands and neotectonism of the southern Australian passive continental margin - a review. J Quat Sci 17:469–489

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Quinn GP (1983) Spawning and egg masses of Siphonaria tasmanica Tenison Woods, 1876 from Victoria. J Malacol Soc Australas 6:81–82

    Google Scholar 

  • Rambaut A, Drummond AJ (2004) Tracer v.1.3. Available at http://tree.bio.ed.ac.uk/software/tracer/

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  PubMed  CAS  Google Scholar 

  • Ridgway KR (2007) Seasonal circulation around Tasmania: An interface between eastern and western boundary dynamics. J Geophys Res 112:C10016

    Article  Google Scholar 

  • Ridgway KR, Condie SA (2004) The 5500-km-long boundary flow off western and southern Australia. J Geophys Res 109:C04017

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0. Laboratory of Molecular Systematics. Smithsonian Institution, Washington

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tellier F, Maynard AP, Correa JA, Faugeron S, Valero M (2009) Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens. Mol Phylogenet Evol 53:679–693

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tilburg CE, Hurlburt HE, O’Brien JJ, Shriver JF (2001) The dynamics of the East Australian Current system: the Tasman Front, the East Auckland Current and the East Cape Current. J Phys Oceanogr 31:2917–2943

    Article  Google Scholar 

  • Van Riel P, Jordaens K, Van Houtte N, Frias Martins AM, Verhagen R, Backeljau T (2005) Molecular systematics of the endemic Leptaxini (Gastropoda:Pulmonata) on the Azores islands. Mol Phylogenet Evol 37:132–143

    Google Scholar 

  • von der Heyden S, Prochazka K, Bowie RCK (2008) Significant population structure and asymmetric gene flow patterns amidst expanding populations of Clinus cottoides (Perciformes, Clinidae): application of molecular data to marine conservation planning in South Africa. Mol Ecol 17:4812–4826

    Article  PubMed  Google Scholar 

  • Waters JM (2008) Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Div Dist 14:692–700

    Article  Google Scholar 

  • Waters JM, Roy MS (2003) Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. J Biogeogr 30:1787–1796

    Article  Google Scholar 

  • Waters JM, King TM, O’Loughlin PM, Spencer HG (2005)Phylogeographic disjunction in an abundant high-dispersal littoral gastropod. Mol Ecol 14:2789–2802

    Google Scholar 

  • Waters JM, McCulloch GA, Eason JA (2007) Marine biogeographical structure in two highly dispersive gastropods: implications for trans-Tasman dispersal. J Biogeogr 34:678–687

    Article  Google Scholar 

  • Waters JM, Wernberg T, Connell SD, Thomsen MS, Zuccarello GC, Kraft GT, Sanderson JC, West JA, Gurgel CFD (2010) Australia’s marine biogeography revisited: Back to the future? Austral Ecol 35:988–992

    Article  Google Scholar 

  • Whitley G (1932) Marine zoogeographical regions of Australia. Aust Natural 8:166–167

    Google Scholar 

  • Wood AR, Gardner JPA (2010) Evolutionary relationships and biogeography of the New Zealand Siphonariidae. Abstract for the 17th International Conference for UNITAS MALACOLOGICA. Trop Nat Hist Suppl 3:68

    Google Scholar 

  • York KL, Blacket MJ, Appleton BR (2008) The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian barnacle Catomerus polymerus (Darwin). Mol Ecol 17:1948–1961

    Article  PubMed  CAS  Google Scholar 

  • Zakas C, Binford J, Navarrete SA, Wares JP (2009) Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. Mar Ecol Prog Ser 394:165–177

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Australian Museum and the NSW Environmental Trust (Grant 2008/RD/0071) for supporting this research financially. We thank Dr Peter Teske for discussions on Siphonaria taxonomy and gene flow and two anonymous reviewers for advice on an earlier version of this manuscript. Collections for this project were undertaken under Permits F86/2163(A) (New South Wales Fisheries Research Permit), 7118 (Tasmania DPIW permit) and RP972 (Victoria General Research Permit).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Colgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colgan, D.J., da Costa, P. Possible drivers of biodiversity generation in the Siphonaria of southeastern Australia. Mar Biodiv 43, 73–85 (2013). https://doi.org/10.1007/s12526-012-0127-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-012-0127-2

Keywords

Navigation