Skip to main content
Log in

An Effective Model to Retrieve Soil Moisture from L- and C-Band SAR Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This study investigated an appropriate method for soil moisture retrieval from radar images and coincident ground measurements acquired over bare soil and sparsely vegetated regions. The adopted approach based on a single scattering integral equation method (IEM) was developed to establish the relationship between backscatter coefficient and surface soil parameters including volumetric soil moisture content and surface roughness. The performance of IEM in 0–7.6 cm is better than that in 0–20 cm. Moreover, IEM can simulate correctly the backscatter coefficients only for the root mean square (RMS) height s < 1.5 cm at C-band and s < 2.5 cm at L-band by using an exponential correlation function and for s > 1.5 cm at C-band and s > 2.5 cm at L-band by using Gaussian function. However, due to the difficulties involved in the parameterization of soil surface roughness, the estimated accuracy is not satisfactory for the inversion of IEM. This paper used a combined roughness parameter and Fresnel reflection coefficient to develop an empirical model. Simulations were performed to support experimental results and to highlight soil moisture content and surface roughness effects in different polarizations. Results showed that a good agreement was found between the IEM simulations and the SAR measurements over a wide range of soil moisture and surface roughness characteristics. The model had a significant operational advantage in soil moisture retrieval. The correlation coefficients were 77.03 % at L-band and 81.45 % at C-band with the RMSEs of 0.515 and 0.4996 dB, respectively. Additionally, this work offered insight into the required application accuracy of soil moisture retrieval at a large area of arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez-Mozos, J., Gonzalez-Audícana, M., & Casalí, J. (2007). Evaluation of empirical and semi-empirical backscattering models for surface soil moisture estimation. Canadian Journal of Remote Sensing, 33(3), 176–188.

    Article  Google Scholar 

  • Baghdadi, N., Holah, N., & Zribi, M. (2006). Calibration of the integral equation model for SAR data in C-band and HH and VV polarizations. International Journal of Remote Sensing, 27(4), 805–816.

    Article  Google Scholar 

  • Baghdadi, N., Saba, E., Aubert, M., Zribi, M., & Baup, F. (2011). Evaluation of radar backscattering models IEM, Oh, and Dubois for SAR data in X-band over bare soils. IEEE Geoscience and Remote Sensing Letters, 8(6), 1160–1164.

    Article  Google Scholar 

  • Baghdadi, N., & Zribi, M. (2006). Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. International Journal of Remote Sensing, 27(18), 3831–3852.

    Article  Google Scholar 

  • Bryant, R., Moran, M. S., Thoma, D. P., Collins, C. D., Skirvin, S., Rahman, M., Slocum, K., Starks, P., Bosch, D., & Dugo, M. G. (2007). Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture. IEEE Geoscience and Remote Sensing Letters, 4(1), 137–141.

    Article  Google Scholar 

  • Callens, M., Verhoest, N. E., & Davidson, M. W. (2006). Parameterization of tillage-induced single-scale soil roughness from 4-m profiles. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 878–888.

    Article  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., & El-Rayes, M. (1985). Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 1, 35–46.

    Article  Google Scholar 

  • Dubois, P. C., Van Zyl, J., & Engman, T. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915–926.

    Article  Google Scholar 

  • Engman, E. T., & Chauhan, N. (1995). Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51(1), 189–198.

    Article  Google Scholar 

  • Fan, Y., & Yingshi, Z. (2010). A new method for soil moisture inversion by synthetic aperture radar. Geomatics and Information Science of Wuhan University, 35(3), 317–321.

    Google Scholar 

  • Fung, A. K., & Chen, K. S. (2004). An update on the IEM surface backscattering model. IEEE Geoscience and Remote Sensing Letters, 1(2), 75–77.

    Article  Google Scholar 

  • Fung, A. K., Li, Z., & Chen, K. S. (1992). Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 356–369.

    Article  Google Scholar 

  • Holah, N., Baghdadi, N., Zribi, M., Bruand, A., & King, C. (2005). Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote Sensing of Environment, 96(1), 78–86.

    Article  Google Scholar 

  • Jester, W., & Klik, A. (2005). Soil surface roughness measurement—Methods, applicability, and surface representation. Catena, 64(2), 174–192.

    Article  Google Scholar 

  • Ji, J., Van der Keur, P., Thomsen, A., & Skriver, H. (1996). Soil moisture retrieval using the Danish L-& C-band polarimetric SAR. In Geoscience and remote sensing symposium, 1996. IGARSS’96 (Vol. 2, pp. 1300–1302).

  • Lievens, H., Verhoest, N. E., Keyser, E. D., Vernieuwe, H., Matgen, P., Álvarez-Mozos, J., & Baets, B. D. (2011). Effective roughness modelling as a tool for soil moisture retrieval from C- and L-band SAR. Hydrology and Earth System Sciences, 15(1), 151–162.

    Article  Google Scholar 

  • Lievens, H., Vernieuwe, H., Alvarez-Mozos, J., De Baets, B., & Verhoest, N. E. (2009). Error in radar-derived soil moisture due to roughness parameterization: An analysis based on synthetical surface profiles. Sensors, 9(2), 1067–1093.

    Article  Google Scholar 

  • Marzahn, P., & Ludwig, R. (2009). On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modeling. Hydrology and Earth System Sciences, 13(3), 381.

    Article  Google Scholar 

  • Mattia, F., Davidson, M. W., Le Toan, T., D’Haese, C. M., Verhoest, N. E., Gatti, A. M., & Borgeaud, M. (2003). A comparison between soil roughness statistics used in surface scattering models derived from mechanical and laser profilers. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1659–1671.

    Article  Google Scholar 

  • Oh, Y. (2004). Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 596–601.

    Article  Google Scholar 

  • Oh, Y., Hong, J. Y., & Lee, S. H. (2005). A simple microwave backscattering model for vegetation canopies. Journal of Electromagnetic Engineering and Science, 5(4), 183–188.

    Google Scholar 

  • Oh, Y., & Kay, Y. C. (1998). Condition for precise measurement of soil surface roughness. IEEE Transactions on Geoscience and Remote Sensing, 36(2), 691–695.

    Article  Google Scholar 

  • Oh, Y., Sarabandi, K., & Ulaby, F. T. (1992). An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 370–381.

    Article  Google Scholar 

  • Oh, Y., Sarabandi, K., & Ulaby, F. T. (1994). An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation. In Geoscience and remote sensing symposium, 1994. IGARSS’94 (Vol. 3, pp. 1582–1584).

  • Oh, Y., Sarabandi, K., & Ulaby, F. T. (2002). Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 40(6), 1348–1355.

    Article  Google Scholar 

  • Rakotoarivony, L., Taconet, O., Vidal-Madjar, D., Bellemain, P., & Benallegue, M. (1996). Radar backscattering over agricultural bare soils. Journal of Electromagnetic Waves and Applications, 10(2), 187–209.

    Article  Google Scholar 

  • Shi, J., Wang, J., Hsu, A. Y., O’Neill, P. E., & Engman, E. T. (1997). Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1254–1266.

    Article  Google Scholar 

  • Srivastava, H. S., Patel, P., Navalgund, R. R., & Sharma, Y. (2008). Retrieval of surface roughness using multi-polarized Envisat-1 ASAR data. Geocarto International, 23(1), 67–77.

    Article  Google Scholar 

  • Ulaby, F. T., Moore, R. K., & Fung, A. K. (1981). Microwave remote sensing: radar remote sensing and surface scattering and emission theory (Vol. 2). Addison-Wesley Publishing Company, Advanced Book Program/World Science Division.

  • Van Oevelen, P. J., & Hoekman, D. H. (1999). Radar backscatter inversion techniques for estimation of surface soil moisture: EFEDA-Spain and HAPEX-Sahel case studies. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 113–123.

    Article  Google Scholar 

  • Verhoest, N. E., Lievens, H., Wagner, W., Álvarez-Mozos, J., Moran, M. S., & Mattia, F. (2008). On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors, 8(7), 4213–4248.

    Article  Google Scholar 

  • Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J. C., Bizzarri, B., Wigneron, J. P., & Kerr, Y. (2007). Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrology Research, 38(1), 1–20.

  • Wang, J. R., Hsu, A., Shi, J. C., O’neill, P. E., & Engman, E. T. (1997). A comparison of soil moisture retrieval models using SIR-C measurements over the Little Washita River watershed. Remote Sensing of Environment, 59(2), 308–320.

    Article  Google Scholar 

  • Zribi, M. (1998). Développement de nouvelles méthodes de modélisation de la rugosité pour la rétrodiffusion hyperfréquence de la surface du sol (Doctoral dissertation).

  • Zribi, M., & Dechambre, M. (2002). A new empirical model to inverse soil moisture and roughness using two radar configurations. In Geoscience and remote sensing symposium, 2002. IGARSS’02 (Vol. 4, pp. 2223–2225).

  • Zribi, M., & Dechambre, M. (2003). A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sensing of Environment, 84(1), 42–52.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Beijing Project: Beijing Flash Flood Disaster Monitoring and Risk Assessment. The authors would like to thank every member who had made contribution to the manuscript. Liangliang Tao designed the study, developed the methodology, and wrote the manuscript. Jing Li formulated the original problem and provided direction and guidance. Liangliang Tao, Qingkong Cai, Xi Chen and Yunfei Zhang performed the experiment, collected the data, and performed the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Li, J., Chen, X. et al. An Effective Model to Retrieve Soil Moisture from L- and C-Band SAR Data. J Indian Soc Remote Sens 45, 621–629 (2017). https://doi.org/10.1007/s12524-016-0626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0626-x

Keywords

Navigation