Skip to main content
Log in

A Simplified Semi-Automatic Technique for Highway Extraction from High-Resolution Airborne LiDAR Data and Orthophotos

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Information on highways is an essential input for various geospatial applications, including car navigation, forensic analysis on highway geometries, and intelligent transportation systems. Semi-automatic and automatic extractions of highways are critical for the regular updating of municipal databases and for highway maintenance. This study presents a semi-automatic data processing approach for extracting highways from high-resolution airborne LiDAR height information and aerial orthophotos. The method was developed based on two data sets. Experimental results for the first testing site showed that the accuracy of the proposed method for highway extraction was 74.50 % for completeness and 73.13 % for correctness. Meanwhile, the completeness and correctness for the second testing site were 71.20 and 70.72 %, respectively. The proposed method was compared with an object-based approach on a different data set. The accuracy for highway extraction of the object-based approach was 64.29 % for completeness and 63.11 % for correctness, whereas that of the proposed method was 67.14 % for completeness and 65.08 % for correctness. This research aims to promote semi-automatic highway extraction from LiDAR data and orthophotos by proposing a new approach and a multistep post-processing technique. The proposed method provides an accurate final output that is valuable for a wide range of geospatial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Boyko, A., & Funkhouser, T. (2011). Extracting roads from dense point clouds in large scale urban environment. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S2–S12.

    Article  Google Scholar 

  • Brennan, R., & Webster, T. L. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.

    Article  Google Scholar 

  • Cao, C., & Sun, Y. (2014). Automatic road centerline extraction from imagery using road GPS data. Remote Sensing, 6(9), 9014–9033.

    Article  Google Scholar 

  • Chauhan, I., Brenner, C., Garg, R. D., & Parida, M. (2014). A new approach to 3D dense LiDAR data classification in urban environment. Journal of the Indian Society of Remote Sensing, 42(3), 673–678.

    Article  Google Scholar 

  • Chen, L.-C., & Lo, C.-Y. (2009). 3D road modeling via the integration of large-scale topomaps and airborne LIDAR data. Journal of the Chinese Institute of Engineers, 32(6), 811–823. doi:10.1080/02533839.2009.9671565.

    Article  Google Scholar 

  • Choi, Y.-W., Jang, Y.-W., Lee, H.-J., & Cho, G.-S. (2008). Three-dimensional LiDAR data classifying to extract road point in urban area. IEEE Geoscience and Remote Sensing Letters, 5(4), 725–729.

    Article  Google Scholar 

  • Clode, S., Kootsookos, P. J., & Rottensteiner, F. (2004). The automatic extraction of roads from LIDAR data. In ISPRS 2004.

  • Craven, M., & Wing, M. G. (2014). Applying airborne LiDAR for forested road geomatics. Scandinavian Journal of Forest Research, 29(2), 174–182. doi:10.1080/02827581.2014.881546.

    Article  Google Scholar 

  • Evans, J. S., & Hudak, A. T. (2007). A multiscale curvature algorithm for classifying discrete return lidar in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1029–1038.

    Article  Google Scholar 

  • Ghasemloo, N., Mobasheri, M. R., Zare, A. M., & Eftekhari, M. M. (2013). Road and tunnel extraction from SPOT satellite images using neural networks. Journal of Geographic Information System, 05(01), 69–74. doi:10.4236/jgis.2013.51007.

    Article  Google Scholar 

  • Gong, L., Zhang, Y., Li, Z., & Bao, Q. (2010). Automated road extraction from LiDAR data based on intensity and aerial photo. In 2010 3rd international congress on image and signal processing (CISP), (Vol. 5, pp. 2130–2133). IEEE.

  • Han, J., Kim, D., Lee, M., & Sunwoo, M. (2014). Road boundary detection and tracking for structured and unstructured roads using a 2D lidar sensor. International Journal of Automotive Technology, 15(4), 611–623.

    Article  Google Scholar 

  • Hatger, C., & Brenner, C. (2003). Extraction of road geometry parameters from laser scanning and existing databases. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(part 3), W13.

    Google Scholar 

  • Heipke, C., Mayer, H., Wiedemann, C., & Jamet, O. (1997). Evaluation of automatic road extraction. International Archives of Photogrammetry and Remote Sensing, 32(3 SECT 4W2), 151–160.

    Google Scholar 

  • Hu, X., Li, Y., Shan, J., Zhang, J., & Zhang, Y. (2014). Road centerline extraction in complex urban scenes from LiDAR data based on multiple features. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7448–7456.

    Article  Google Scholar 

  • Im, J., Jensen, J. R., & Hodgson, M. E. (2008). Object-based land cover classification using high-posting-density LiDAR data. GIScience and Remote Sensing, 45(2), 209–228.

    Article  Google Scholar 

  • Jabari, S., & Zhang, Y. (2013). Very high resolution satellite image classification using fuzzy rule-based systems. Algorithms, 6(4), 762–781.

    Article  Google Scholar 

  • Lim, J., & Yang, M. H. (2005). A direct method for modeling non-rigid motion with thin plate spline. In IEEE computer society conference on Computer vision and pattern recognition, 2005. (CVPR’2005). (Vol. 1, pp. 1196–1202). IEEE.

  • Lin, X., Zhang, J., Liu, Z., Shen, J., & Duan, M. (2011). Semi-automatic extraction of road networks by least squares interlaced template matching in urban areas. International Journal of Remote Sensing, 32(17), 4943–4959. doi:10.1080/01431161.2010.493565.

    Article  Google Scholar 

  • Mastin, T., & Strohman, R. (2010). Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing, 2(4), 1120–1141.

    Article  Google Scholar 

  • Matkan, A. A., Hajeb, M., & Sadeghian, S. (2014). Road extraction from lidar data using support vector machine classification. Photogrammetric Engineering and Remote Sensing, 80(5), 409–422. doi:10.14358/pers.80.5.409.

    Article  Google Scholar 

  • Pereira, L. G., & Janssen, L. L. F. (1999). Suitability of laser data for DTM generation: A case study in the context of road planning and design. ISPRS Journal of Photogrammetry and Remote Sensing, 54(4), 244–253.

    Article  Google Scholar 

  • Samadzadegana, F., Bigdelia, B., & Hahnb, M. (2009). Automatic road extraction from lidar data based on classifier fusion in urban area. Laser Scanning, 38, pp. 1–2.

  • Sirmacek, B., & Unsalan, C. (2010). Road network extraction using edge detection and spatial voting. pp. 3113–3116. doi: 10.1109/icpr.2010.762.

  • Song, M., & Civco, D. (2004). Road extraction using SVM and image segmentation. Photogrammetric Engineering and Remote Sensing, 70(12), 1365–1371.

    Article  Google Scholar 

  • Tiwari, P. S., Pande, H., & Pandey, A. K. (2009). Automatic urban road extraction using airborne laser scanning/altimetry and high resolution satellite data. Journal of the Indian Society of Remote Sensing, 37(2), 223–231.

    Article  Google Scholar 

  • Wang, J., González-Jorge, H., Lindenbergh, R., Arias-Sánchez, P., & Menenti, M. (2013). Automatic estimation of excavation volume from laser mobile mapping data for mountain road widening. Remote Sensing, 5(9), 4629–4651.

    Article  Google Scholar 

  • Wang, G., Zhang, Y., Li, J., & Song, P. (2011). 3D road information extraction from LIDAR data fused with aerial-images. In 2011 IEEE international conference on spatial data mining and geographical knowledge services (ICSDM) (pp. 362–366). IEEE.

  • Zhang, Y., & Yan, L. (2007). Road surface modeling and representation from point cloud based on fuzzy clustering. Geo-spatial Information Science, 10(4), 276–281.

    Article  Google Scholar 

  • Zhao, J., & You, S. (2012). Road network extraction from airborne LiDAR data using scene context. In 2012 IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW) (pp. 9–16). IEEE.

  • Zhao, J., You, S., & Huang, J. (2011). Rapid extraction and updating of road network from airborne LiDAR data. In 2011 IEEE applied imagery pattern recognition workshop (AIPR), (pp. 1–7). IEEE.

  • Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. Geoscience and Remote Sensing Letters, IEEE, 10(4), 928–931.

    Article  Google Scholar 

  • Zhou, L., & Stein, A. (2013). Application of random sets to model uncertainty of road polygons extracted from airborne laser points. Computers, Environment and Urban Systems, 41, 289–298.

    Article  Google Scholar 

  • Zhu, P., Lu, Z., Chen, X., Honda, K., & Eiumnoh, A. (2004). Extraction of city roads through shadow path reconstruction using laser data. Photogrammetric Engineering and Remote Sensing, 70(12), 1433–1440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1218 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sameen, M.I., Pradhan, B. A Simplified Semi-Automatic Technique for Highway Extraction from High-Resolution Airborne LiDAR Data and Orthophotos. J Indian Soc Remote Sens 45, 395–405 (2017). https://doi.org/10.1007/s12524-016-0610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0610-5

Keywords

Navigation