Skip to main content

Advertisement

Log in

Prospecting of Au by Remote Sensing and Geochemical Data Processing Using Fractal Modelling in Shishe-Botagh, Area (NW Iran)

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The Shishe-botagh area is located in the western Azerbaijan Province, Iran. In this paper, geological map, ASTER satellite images were used and processed by ENVI software. Furthermore, lithogeochemical data were analyzed by fractal modeling. In this paper alternation zones distinguished by using band ratio, Minimum Noise Fraction (MNF) and Spectral Angle Mapper (SAM). Geochemical anomalies were separated by number – size (N-S) fractal model. The (N-S) fractal method was utilized for delineation of high intensive Au, As and Ag anomalies with silica veins in the west and South West of the the Shishe-botagh area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Afzal, P., Harati, H., Fadakar Alghalandis, Y., & Yasrebi, A. B. (2013). Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in kahang porphyry-type cu deposit, Iran. Chemie der Erde, 73, 533–543.

    Article  Google Scholar 

  • Agterberg, F. P. (1995). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review, 37, 1–8.

    Article  Google Scholar 

  • Agterberg, F. P., Cheng, Q., & Wright, D. F. (1993). Fractal modeling of mineral deposits. In J. Elbrond, & X. Tang (Eds.), 24th APCOM symposium proceeding (pp. 43–53). Canada: Montreal.

    Google Scholar 

  • Agterberg, FP., Cheng Q. Brown A., Good, D., (1996). Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Computational Geosciences 22(5). 497–507.

    Article  Google Scholar 

  • Azizi, H., Tarverdi, M. A., & Akbarpour, A. (2010). Extraction of hydrothermal alterations from aster swir data from East Zanjan, Northern Iran. Advances in Space Research, 46, 99–109.

    Article  Google Scholar 

  • Beiranvand Pour, A., & Hashim, M. (2012). The application of aster remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9.

    Article  Google Scholar 

  • Cheng, Q. (1999). Spatial and Scaling Modelling for Geochemical Anomaly Separation. Journal of Geochemical Exploration, 65(3), 175–194.

    Article  Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Proveince, China. Ore Geology Reviews, 32, 314–324.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The Separation of Geochemical Anomalies from Background by Fractalmethods. Journal of Geochemical Exploration, 51, 109–130.

    Article  Google Scholar 

  • Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., & Liu, H., (2010). Delineation and explanation of geochemical anomalies using fractal models in the heqing area, Yunnan Proveince, China. Journal of Geochemical Exploration 105, 95–105.

    Article  Google Scholar 

  • Feizi, F., & Mansouri, E. (2012). Identification of alteration zones with using ASTER data in a part of Qom Province, Central Iran. Journal of Basic and Applied Scientific Research, 2(10), 10173–10184.

  • Feizi, F., & Mansouri, E. (2013a). Introducing the iron potential zones using remote sensing studies in South of Qom Province, Iran. Open Journal of Geology, 3, 278–286.

  • Feizi, F., & Mansouri, E. (2013b). Separation of alteration zones on ASTER data and integration with drainage geochemical maps in Soltanieh, Northern Iran. Open Journal of Geology, 3, 134–142.

  • Goncalves, M. A., And, M. A., & Oliveira, V. (2001). Geochemical anomaly separation by multifractal modeling. Journal of Geochemical Exploration, 72, 91–114.

    Article  Google Scholar 

  • Gumiel, P., Sanderson, D.J., Arias M. Roberts, S., & Martín-Izard, A., (2010). Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews 38, 307–318.

  • Hashemi, M., & Afzal, P. (2013). Identification of geochemical anomalies by using of number-size (n-s) fractal model in bardaskan area, NE Iran. Arabian Journal of Geosciences, 6, 4785–4794.

    Article  Google Scholar 

  • Hassanpour, S., & Afzal, P. (2013). Application of concentration-number (c-n) multifractal modelling for geochemical anomaly separation in haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6, 957–970.

    Article  Google Scholar 

  • Hawkes, R. A. W., & Webb, H. E. (1979). Geochemistry in mineral exploration (2nd ed., p. 657pp). New York: Academic Press.

    Google Scholar 

  • Heidari, M., Ghaderi, M., & Afzal, P. (2013). Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran. Applied Geochemistry, 31, 119–132.

    Article  Google Scholar 

  • Inzana, J., Kusky T. Higgs, G., Tucker, R.,(2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences 37, 59–72.

    Article  Google Scholar 

  • Kujjo, C. P. (2010). Application of remote sensing for gold exploration in the nuba montains, Sudan (p. 99 pp). Master of Science Thesis: Bowling Green State University.

    Google Scholar 

  • Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77, 167–175.

    Article  Google Scholar 

  • Li, C., Xu, Y., & Jiang, X. (1994). The fractal model of mineral deposits. Geology of Zhejiang, 10, 25–32 (In Chinese with English Abstract).

    Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature (pp. 1–468). San Fransisco: Freeman.

    Google Scholar 

  • Mars, J. C., & Rowan, L. C. (2006). Radiometer (ASTER) data and logical operator algorithms arc, iran, using advanced spaceborne thermal emission and reflection regional mapping of phyllic and argillic altered rocks in the zagros magmatic. Geosphere, 2, 161–186.

    Article  Google Scholar 

  • Moghtaderi, A., Moore, F., & Mohammadzadeh, A. (2007). The application of advanced space-borne thermal emission and reflection (aster) radiometer data in the detection of alteration in the chadormalu paleocrater, Bafq region, Central Iran. Journal of Asian Earth Sciences, 30, 238–252.

    Article  Google Scholar 

  • Monecke, T., Monecke, J., Herzig, P. M., Gemmell, J. B., & Monch, W. (2005). Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals. Earth and Planetary Science Letters, 232, 363–378.

    Article  Google Scholar 

  • Oskouei, M., & Busch, W. (2012). A selective combined classification algorithm for mapping alterations on aster data. Applied Geomatics, 4, 47–54.

    Article  Google Scholar 

  • Poormirzaee, R., & Oskouei, M. M. (2010). Use of spectral analysis for detection of alterations in ETM data, Yazd, Iran. Applied Geomatics, 2, 147–154.

    Article  Google Scholar 

  • Rajendran, S., Khirbash, S.A., Pracejus, B., Nasir, S., Al-Abri, A.H., Kusky T.M., & Ghulam, A., (2012). ASTER detection of chromite bearing mineralized zones in semail ophiolite massifs of the northern oman mountains: exploration strateg. Ore Geology Reviews 44, 121–135.

    Article  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.

    Article  Google Scholar 

  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the mountain pass. California Area using, 341.

  • Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A. B., & Daneshvar Saein, L. (2012). Application of fractal models to outline mineralized zones in the zaghia iron ore deposit, central Iran. Journal of Geochemical Exploration, 122, 9–19.

    Article  Google Scholar 

  • Sanderson, D. J., Roberts, S., & Gumiel, P. (1994). A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Economic Geology, 89, 168–173.

    Article  Google Scholar 

  • Shi, J., & Wang, C. (1998). Fractal analysis of gold deposits in china: implication for giant deposit exploration. Earth Science Journal of China University Geoscience, 23, 616–618 (In Chinese with English Abstract).

    Google Scholar 

  • Tukey, J.W., (1977). Exploratory Data Analysis. First ed. Pearson, pp 1–688.

  • Turcotte, D. L. (1996). Fractals and chaos in geophysics (second ed., pp. 81–99). Cambridge UK: Cambridge University Press.

    Google Scholar 

  • Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge: Cambridge Univ, Press.

    Book  Google Scholar 

  • Turcotte, D. L. (2002). Fractals in Petrology. Lithos, 65, 261–271.

    Article  Google Scholar 

  • Yetkin, E., Toprak, V., & Suezen, M. L. (2004). Alteration mapping by remote sensing: Application to hasandağ—Melendiz volcanic, complex. Istanbul: Geo-Imagery Bridging Continents XXth ISPRS Congress.

    Google Scholar 

  • Yousefifar, S., Khakzad, A., Asadi Harooni, H., Karami, J., Jafari, M. R., & Vosoughi Abedin, M. (2011). Prospection of Au and Cu bearing targets by exploration data combination in southern part of dalli cu-au porphyry deposit. Central Iran. Archives of Mining Sciences, 56(No1), 21–34.

    Google Scholar 

  • Zuo, R. (2011). Identifying geochemical anomalies associated with cu and pb-zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111, 13–22.

    Article  Google Scholar 

  • Zuo, R., Cheng, Q., & Xia, Q. (2009). Application of fractal models to characterization of vertical distribution of geochemical element concentration. Journal of Geochemical Exploration, 102(1), 37–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faranak Feizi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizi, F., Mansouri, E. & Karbalaei Ramezanali, A. Prospecting of Au by Remote Sensing and Geochemical Data Processing Using Fractal Modelling in Shishe-Botagh, Area (NW Iran). J Indian Soc Remote Sens 44, 539–552 (2016). https://doi.org/10.1007/s12524-015-0510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0510-0

Keywords

Navigation