Skip to main content
Log in

Leporid management and specialized food production at Teotihuacan: stable isotope data from cottontail and jackrabbit bone collagen

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Archaeological research at the UNESCO World Heritage site of Teotihuacan (ad 1–ad 550) in the Basin of Mexico provides evidence for leporid (cottontails and jackrabbits) breeding and/or management within a residential complex of the city, Oztoyahualco. The present study tests this notion by analyzing Teotihuacan leporid bone collagen samples (n = 134) for stable isotope ratios of carbon (δ13Ccollagen) and nitrogen (δ15Ncollagen) to provide information on ancient leporid diet and ecology. Results demonstrate that carbon-stable isotope values from Oztoyahualco specimens are significantly higher than those from other contexts at Teotihuacan and from a sample of modern specimens from the region. These data are consistent with the notion that leporids from Oztoyahualco consumed diets high in C4 and CAM plants, such as the human-cultivated staples of maize (Zea mays), nopal cactus (Opuntia sp.), and maguey (Agave sp.). Nitrogen-stable isotope results show no significant differences between Oztoyahualco and other contexts, suggesting that Oztoyahualco leporids inhabited similar environments, ate food grown on similar soils, and were feeding at the same trophic level. When considered in combination with archaeological data and previously published isotopic results, δ13Ccollagen data from Oztoyahualco support the idea that leporids were artificially provisioned by humans, consistent with the hypothesis that they were bred and/or managed through human labor. More broadly, these results hint that food production at Teotihuacan was at least in part conducted by specialized workers in a manner similar to that of commercialized market economy of the later Aztec Empire (ad 1428–1521).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451

    Article  Google Scholar 

  • Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18:293–317

    Article  Google Scholar 

  • Ambrose SH, Norr L (1993) Isotopic composition of dietary protein and energy versus bone collagen and apatite: purified diet growth experiments. In: Lambert J, Grupe G (eds) Molecular archaeology of prehistoric human bone. Springer, Berlin, pp. 1–37

    Chapter  Google Scholar 

  • Amundson R et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031. doi:10.1029/2002gb001903

    Article  Google Scholar 

  • Beramendi LEO, Gonzalez G, Soler AMA (2012) Cronología para Teopancazco: Integración de datos arqueomagnéticos y un modelo bayesiano de radiocarbon. In: Manzanilla LR (ed) Estudios arqueométricos del centro de barrio del Teopancazco en Teotihuacan. Instituto de Investigaciones Antropológicas, UNAM, Mexico, D.F.

  • Berdan F (1996) Aztec imperial strategies vol 15. Dumbarton Oaks, Washington, D.C.

  • Biskowski M (2000) Maize preparation and the Aztec subsistence economy. Anc Mesoam 11:293–306

    Article  Google Scholar 

  • Blackman MJ, Stein GJ, Vandiver PB (1993) The standardization hypothesis and ceramic mass production: technological, compositional, and metric indexes of craft specialization at tell Leilan. Syria American Antiquity 58:60–80. doi:10.2307/281454

    Article  Google Scholar 

  • Brumfiel EM (1980) Specialization, market exchange, and the Aztec state: a view from Huexotla. Curr Anthropol 21:459–478

    Article  Google Scholar 

  • Buchardt B, Bunch V, Helin P (2007) Fingernails and diet: stable isotope signatures of a marine hunting community from modern Uummannaq, North Greenland. Chem Geol 244:316–329

    Article  Google Scholar 

  • Clinton JM, Peres TM (2011) Pests in the garden: testing the garden-hunting model at the Rutherford-Kizer site, Sumner County, Tennessee. Tennessee Archaeology 5:131–141

    Google Scholar 

  • Conrad C, Jones EL, Newsome SD, Schwartz DW (in press) Bone isotopes, eggshell and turkey husbandry at Arroyo Hondo Pueblo Journal of Archaeological Science: Reports

  • Cortés H (1977) His five letters of relation to the emperor Charles V, 1519–1526: second letter. Rio Grande Press, Glorietta, NM

    Google Scholar 

  • Costin CL (1991) Craft specialization: issues in defining, documenting and explaining the organization of production. Archaeol Method Theory 3:1–56

    Google Scholar 

  • Costin CL, Hagstrum MB (1995) Standardization, labor investment, skill, and the organization of ceramic production in late prehispanic highland Peru. Am Antiq 60:619–639. doi:10.2307/282046

    Article  Google Scholar 

  • Cowgill GL (2008) An update on Teotihuacan. Antiquity 82:962–975

    Article  Google Scholar 

  • Cowgill GL (2015) Ancient Teotihuacan. Cambridge University Press

  • de Montellano BRO (1978) Aztec cannibalism: an ecological necessity? Science 200:611–617. doi:10.1126/science.200.4342.611

    Article  Google Scholar 

  • DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  Google Scholar 

  • Di Peso C (1974) Casas Grandes: a fallen trading Center of the Gran Chichimeca, volume 2: Medio period. Amerind Foundation and Northland Press, Dragoon, AZ

    Google Scholar 

  • Díaz B (1963) The conquest of new Spain. Penguin Books, New York, NY

    Google Scholar 

  • Dice LR (1929) An attempt to breed cottontail rabbits in captivity. J Mammal 10:225–229. doi:10.2307/1373931

    Article  Google Scholar 

  • Eerkens JW, Bettinger RL (2001) Techniques for assessing standardization in artifact assemblages: can we scale material variability? Am Antiq 66:493–504. doi:10.2307/2694247

    Article  Google Scholar 

  • Ehleringer JR (1978) Implications of quantum yield differences on the distributions of C3 and C4 grasses. Oecologia 31:255–267. doi:10.1007/bf00346246

    Article  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  Google Scholar 

  • Flad RK, Hruby ZX (2007) “Specialized” production in archaeological contexts: rethinking specialization, the social value of products, and the practice of production. Archeol Pap Am Anthropol Assoc 17:1–19. doi:10.1525/ap3a.2007.17.1.1

    Article  Google Scholar 

  • Francey RJ et al (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51. doi:10.3402/tellusb.v51i2.16269

  • Froehle AW, Kellner CM, Schoeninger MJ (2010) FOCUS: effect of diet and protein source on carbon stable isotope ratios in collagen: follow up to Warinner and Tuross (2009). J Archaeol Sci 37:2662–2670

    Article  Google Scholar 

  • Gerry JP (1997) Bone isotope ratios and their bearing on elite privilege among the classic Maya. Geoarchaeology 12:41–69

    Article  Google Scholar 

  • Grimstead D, Reynolds A, Hudson A, Akins N, Betancourt J (2014) Reduced population variance in strontium isotope ratios informs domesticated turkey use at Chaco Canyon, New Mexico, USA. J Archaeol Method Th 23:1–23

  • Hare EP, Fogel ML, Stafford TW Jr, Mitchell AD, Hoering TC (1991) The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J Archaeol Sci 18:277–292

    Article  Google Scholar 

  • Harner M (1977) The ecological basis for Aztec sacrifice. Am Ethnol 4:117–135. doi:10.1525/ae.1977.4.1.02a00070

    Article  Google Scholar 

  • Harris M (1977) Cannibals and kings: the origins of cultures. Vintage Books, New York

    Google Scholar 

  • Hartman G (2011) Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Funct Ecol 25:122–131. doi:10.1111/j.1365-2435.2010.01782.x

    Article  Google Scholar 

  • Hedges REM, Reynard LM (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–1251

    Article  Google Scholar 

  • Hernández C (1993) La lítica. In: Manzanilla L (ed) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco I: Las excavaciones. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DF, pp. 388–467

    Google Scholar 

  • Howell N (1999) The demography of the Dobe !Kung. Academic Press, New York

    Google Scholar 

  • Howland MR et al (2003) Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int J Osteoarchaeol 13:54–65

    Article  Google Scholar 

  • Jim S, Ambrose SH, Evershed RP (2004) Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen, and apatite: implications for their use in paleodietray reconstruction. Geochim Cosmochim Acta 68:61–72

    Article  Google Scholar 

  • Jones EL (2006) Prey choice, mass collecting, and the wild European rabbit (Oryctolagus cuniculus). J Anthropol Archaeol 25:275–289

    Article  Google Scholar 

  • Keeling CD (1979) The Suess effect: 13Carbon-14Carbon interrelations. Environ Int 2:229–300

    Article  Google Scholar 

  • Kellner CM, Schoeninger MJ (2007) A simple carbon isotope model for reconstructing prehistoric human diet. Am J Phys Anthropol 133:1112–1127

    Article  Google Scholar 

  • Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci 107:19691–19695. doi:10.1073/pnas.1004933107

    Article  Google Scholar 

  • Krueger HW, Sullivan CH (1984) Models for carbon isotope fractionation between diet and bone. In: stable isotopes in nutrition, vol 258. ACS symposium series. Am Chem Soc 258:205–220. doi:10.1021/bk-1984-0258.ch014

    Google Scholar 

  • LeCount LJ (2010) Maya palace kitchens: suprahousehold food preparation at the Late and Terminal Classic site of Xunantunich, Belize. In: Inside Ancient Kitchens. New Directions in the Study of Daily Meals and Feasts. University Press of Colorado, pp 133–160

  • Lee-Thorp JA, Sealy JC, van der Merwe NJ (1989) Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J Archaeol Sci 16:585–599

    Article  Google Scholar 

  • Linares OF (1976) “garden hunting” in the American tropics. Hum Ecol 4:331–349. doi:10.1007/bf01557917

    Article  Google Scholar 

  • Longacre WA, Kvamme KL, Kobayashi M (1988) Southwestern pottery standardization: an ethnoarchaeological view from the Philippines. Kiva 53:101–112

    Article  Google Scholar 

  • Manzanilla L (1993) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco I: Las excavaciones. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DF

  • Manzanilla L (1994) Geografía sagrada e inframundo en Teotihuacan. In: Antropológicas, vol 11. UNAM, Instituto de Investigaciones Antropológicas, UNAM México, pp 53–56

  • Manzanilla L (1996) Corporate groups and domestic activities at Teotihuacan. Lat Am Antiq 7:228–246. doi:10.2307/971576

    Article  Google Scholar 

  • Manzanilla L, López C, Freter A (1996) Dating results from excavations in quarry tunnels behind the pyramid of the sun at Teotihuacan. Anc Mesoam 7:245–266. doi:10.1017/S0956536100001450

    Article  Google Scholar 

  • Manzanilla LR (2007) Las "casas" nobles de los barrios de Teotihuacan: Estructuras exclusionistas en un entorno corporativo El Colegio Nacional La. Memoria 2007:485–502

    Google Scholar 

  • Manzanilla LR (2012) Estudios arqueométricos del centro de barrio de Teopancazco en Teotihuacan. Universidad Nacional Autónoma de México, Coordinación de la Investigación Científica-Coordinación de Humanidades, México

  • Manzanilla LR, Barba L, Chavez R, Tejero A, Cifuentes G, Peralta N (1994) Caves and geophysics: an approximation to the underworld of Teotihuacan. Mexico Archaeometry 36:141–157. doi:10.1111/j.1475-4754.1994.tb01070.x

    Article  Google Scholar 

  • McCaffery H, Tykot R, Gore KD, DeBoer B (2014) Stable isotope analysis of Turkey (Meleagris gallopavo) diet from Pueblo II and Pueblo III sites, middle San Juan region, Northwest New Mexico. Am Antiq 79:337–352. doi:10.7183/0002-7316.79.2.337

    Article  Google Scholar 

  • McClung de Tapia E, Martínez Yrízar D, Ibarra Morales E, Adriano Morán CC (2014) Los orígenes prehispánicos de una tradición alimentaria en la cuenca de méxico. Anales de Antropología 48:97–121

    Article  Google Scholar 

  • Millon R (1973) The Teotihuacan map: part I: text. University of Texas Press, Austin

    Google Scholar 

  • Millon R, Bennyhoff JA (1961) A long architectural sequence at Teotihuacan. Am Antiq 26:516–523. doi:10.2307/278739

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between 15 N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  Google Scholar 

  • Moragas Segura N (1994) Salvamento arqueologico en la Puerta 5: Cueva II-Cueva III-Cala II. Marzo 1993-Octubre 1993. In: Informe tecnico, Proyecto Especial 1992–1994. Instituto Nacional de Antropologia e Historia, Mexico

  • Moragas Segura N (2002) Cuevas ceremoniales en Teotihuacan durante el periodo postclasico Boletín americanista:165–176

  • Nations JD, Nigh RB (1980) The evolutionary potential of Lacandon Maya sustained-yield tropical forest agriculture Journal of Anthropological Research:1–30

  • Neusius S (2008) Game procurement among temperate horticulturists the case for garden hunting by the Dolores Anasazi. In: Reitz E, Scudder S, Scarry CM (eds) Case studies in environmental archaeology. Interdisciplinary contributions to archaeology. Springer, New York, pp. 297–314. doi:10.1007/978-0-387-71303-8_15

    Chapter  Google Scholar 

  • O’Connell TC, Kneale CJ, Tasevska N, Kuhnle GGC (2012) The diet-body offset in human nitrogen isotopic values: a controlled dietary study. Am J Phys Anthropol 149:426–434. doi:10.1002/ajpa.22140

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Article  Google Scholar 

  • Ortiz Butrón A, Barba L (1993) La química en el estudio de áres de actividad. In: Manzanilla L (ed) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco II: Los estudios específicos. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DF, pp. 617–660

    Google Scholar 

  • Parsons J (2010) The pastoral niche in pre-Hispanic Mesoamerica. In: Staller J, Carrasco M (eds) Pre-Columbian foodways. Springer, New York, pp. 109–136. doi:10.1007/978-1-4419-0471-3_4

    Chapter  Google Scholar 

  • Parsons JR (2008) Beyond Santley and rose (1979): the role of aquatic resources in the prehispanic economy of the basin of Mexico. J Anthropol Res 64:351–366. doi:10.2307/20371260

    Article  Google Scholar 

  • Rawlings TA, Driver JC (2010) Paleodiet of domestic Turkey, shields Pueblo (5MT3807), Colorado: isotopic analysis and its implications for care of a household domesticate. J Archaeol Sci 37:2433–2441

    Article  Google Scholar 

  • Rice PM (1991) Specialization, standardization and diversity: a retrospective. In: Bishop RL, Lange FW (eds) The ceramic legacy of Anna O. Shepard. University of Colorado Press, Niwot

    Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    Article  Google Scholar 

  • Rubino M et al (2013) A revised 1000 year atmospheric δ13C-CO2 record from law dome and south pole Antarctica. J Geophys Res Atmos 118:8482–8499. doi:10.1002/jgrd.50668

    Article  Google Scholar 

  • Sanders WT, Parsons JR, Logan MH (1976) Summary and conclusions. In: Wolf ER (ed) The valley of Mexico: studies in pre-Hispanic ecology and society. University of New Mexico Press, Albuquerque

    Google Scholar 

  • Schmitt J et al (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336:711–714. doi:10.1126/science.1217161

    Article  Google Scholar 

  • Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639

    Article  Google Scholar 

  • Schollmeyer K, Driver J (2013) Settlement patterns, source–sink dynamics, and artiodactyl hunting in the prehistoric U.S. Southwest J Archaeol Method Theory 20:448–478. doi:10.1007/s10816-012-9160-5

    Article  Google Scholar 

  • Schwarcz HP (2000) Some biochemical aspects of carbon isotopic paleodiet studies. In: Ambrose S, Katzenberg M (eds) Biogeochemical approaches to paleodietary analysis, vol 5. Advances in archaeological and museum science. Springer, US, pp. 189–209. doi:10.1007/0-306-47194-910

    Google Scholar 

  • Sealy J, Johnson M, Richards M, Nehlich O (2014) Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J Archaeol Sci 47:64–69

    Article  Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384

    Article  Google Scholar 

  • Smith ME (1979) The Aztec marketing system and settlement pattern in the valley of Mexico: a central place analysis. Am Antiq 44:110–125. doi:10.2307/279193

    Article  Google Scholar 

  • Somerville AD, Nelson BA, Knudson KJ (2010) Isotopic investigation of pre-Hispanic macaw breeding in Northwest Mexico. J Anthropol Archaeol 29:125–135

    Article  Google Scholar 

  • Somerville AD, Sugiyama N, Manzanilla LR, Schoeninger MJ (2016) Animal management at the ancient metropolis of Teotihuacan, Mexico: stable isotope analysis of leporid (cottontail and jackrabbit) bone mineral. PLoS One 11:e0159982. doi:10.1371/journal.pone.0159982

    Article  Google Scholar 

  • Stahl PW (2014) Garden hunting. In: Smith C (ed) Encyclopedia of global archaeology. Springer, New York, pp. 2945–2952. doi:10.1007/978-1-4419-0465-2_2132

    Chapter  Google Scholar 

  • Starbuck, DR (1975) Man-animal relationships in pre-Columbian Central Mexico. Ph.D. Thesis, Yale University

  • Stowe LG, Teeri JA (1978) The geographic distribution of C4 species of the Dicotyledonae in relation to climate. Am Nat 112:609–623. doi:10.2307/2460127

    Article  Google Scholar 

  • Sugiyama N (2014) Animals and sacred mountains: how ritualized performances materialized state-ideologies at Teotihuacan, Mexico. Ph. Dissertation, Harvard University

  • Sugiyama N, Somerville AD, Schoeninger MJ (2015) Stable isotopes and zooarchaeology at Teotihuacan, Mexico reveal earliest evidence of wild carnivore management in Mesoamerica. PLoS One 10:e0135635. doi:10.1371/journal.pone.0135635

    Article  Google Scholar 

  • Sugiyama N, Valadez Azúa R, Rodríguez B (2014) Faunal acquisition, maintenance and consumption: how the teotihuacanos got their meat. Paper presented at the 79th Annual Society for American Archaeology Meeting, Austin, Texas, April 23–27, 2014

  • Sugiyama N, Valadez R, PéRez G, RodríGuez B, Torres F (2013) Animal management, preparation and sacrifice: reconstructing burial 6 at the moon pyramid. Teotihuacan, México Anthropozoologica 48:467–485. doi:10.5252/az2013n2a18

    Article  Google Scholar 

  • Sugiyama S, Cabrera RC (2007) The moon pyramid project and the Teotihuacan state polity. Anc Mesoam 18:109–125. doi:10.1017/S0956536107000053

    Article  Google Scholar 

  • Szpak P, Millaire J-F, White CD, Longstaffe FJ (2012) Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). J Archaeol Sci 39:3721–3740

    Article  Google Scholar 

  • Szuter CR (1991) Hunting by Hohokam desert farmers. Kiva 56:277–291. doi:10.2307/30247277

    Article  Google Scholar 

  • Thornton E, Emery KF, Speller C (in press) Ancient Maya turkey husbandry: Testing theories through stable isotope analysis Journal of Archaeological Science: Reports

  • Tieszen LL, Fagre T (1993a) Effect of diet quality and composition of respiratory CO2, bone, collagen, bioapatite, and soft tissues. In: Lambert J, Grupe G (eds) Molecular archaeology of prehistoric human bone. Springer, Berlin, pp. 121–156

    Chapter  Google Scholar 

  • Tieszen LL, Fagre T (1993b) Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In: Lambert J, Grupe G (eds) Molecular archaeology of prehistoric human bone. Springer, Berlin, pp. 121–155

    Chapter  Google Scholar 

  • Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337–350. doi:10.1007/bf00347910

    Article  Google Scholar 

  • Tykot RH, Van der Merwe NJ, Hammond N (1996) Stable isotope analysis of bone collagen, bone apatite, and tooth enamel in the reconstruction of human diet: a case study from Cuello, Belize. In: Orna MV (ed) Archaeological chemistry V. American Chemical Society. Washington, DC, pp. 355–365

    Chapter  Google Scholar 

  • Ugan A, Coltrain J (2011) Variation in collagen stable nitrogen values in black-tailed jackrabbits (Lepus californicus) in relation to small-scale differences in climate, soil, and topography. J Archaeol Sci 38:1417–1429

    Article  Google Scholar 

  • Valadez R (1993) Macrofósiles faunísticos. In: Manzanilla L (ed) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco II: Los estudios específicos. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DF, pp. 729–831

    Google Scholar 

  • Van der Merwe NJ, Tykot RH, Hammond N, Oakberg K (2000) Diet and animal husbandry of the Preclassic Maya at Cuello, Belize: isotopic and zooarchaeological evidence. In: Ambrose SH, Katzenberg MA (eds) Biogeochemical approaches to paleodietary analysis. Kluwer Academic Publishers, New York, pp. 23–38

    Google Scholar 

  • VanPool TL, Leonard RD (2002) Specialized ground stone production in the Casas Grandes Region of northern Chihuahua. Mexico Am Antiq 67:710–730. doi:10.2307/1593800

    Article  Google Scholar 

  • Virginia RA, Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54:317–325

    Article  Google Scholar 

  • Warinner C, Garcia NR, Tuross N (2013) Maize, beans and the floral isotopic diversity of highland Oaxaca Mexico. J Archaeol Sci 40:868–873

    Article  Google Scholar 

  • Warinner C, Tuross N (2009) Alkaline cooking and stable isotope tissue-diet spacing in swine: archaeological implications. J Archaeol Sci 36:1690–1697

    Article  Google Scholar 

  • White CD, Pohl MED, Schwarcz HP, Longstaffe FJ (2001) Isotopic evidence for Maya patterns of deer and dog use at Preclassic Colha. J Archaeol Sci 28:89–107

    Article  Google Scholar 

  • Williamson T (2006) The archaeology of rabbit warrens. Shire Publications, Ltd., Buckinghamshire, UK

    Google Scholar 

Download references

Acknowledgments

We thank Doctor María de los Ángeles Olay Barrientos, the Consejo Nacional de México, and the Instituto Nacional de Antropología e Historia for supporting the study. Sample selection was approved and facilitated by Dr. Raúl Valadez Azúa and Dr. Bernardo Rodríguez Galicia, coordinators of the Laboaratorio de Paleozoología Instituto de Investigaciones Antropológicas, de la Universidad Nacional Autónoma de México. Funding was provided by a National Science Foundation Doctoral Dissertation Research Improvement Grant (NSF# 1262186; PIs: MJS and ADS) and a NSF-IGERT Fellowship (ADS; NSF# 0903551). Modern specimens were obtained from the Smithsonian’s National Museum of Natural History. Dr. Bruce Deck assisted with isotopic analysis. We thank the volunteers of the Paleodiet Laboratory, including Janell Bryant, Cheyenne Butcher, Amanda Edwards, Adrienne Koh, Hollie Lappin, Sean Lee, Christi Menger, Tykie Paxton, Kelsie Telson, Sandra Victorini, Jonathan Wong, Jason Kjolsing, Mikael Fauvelle, Sarah Baitzel, Matthew Sitek, and Misha Miller Sisson for their assistance in sample preparation. Additionally, we thank Melanie Beasley for laboratory support and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Somerville.

Electronic supplementary material

Online Resource 1

Table presenting contextual information and isotopic data for modern leporid specimens. (XLSX 13 kb)

Online Resource 2

Table presenting contextual information and isotopic data for archeological leporid specimens. (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somerville, A.D., Sugiyama, N., Manzanilla, L.R. et al. Leporid management and specialized food production at Teotihuacan: stable isotope data from cottontail and jackrabbit bone collagen. Archaeol Anthropol Sci 9, 83–97 (2017). https://doi.org/10.1007/s12520-016-0420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-016-0420-2

Keywords

Navigation