Skip to main content

Advertisement

Log in

Cortical bone loss in a sample of human skeletons from the Muge Shell middens

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The Muge shell middens of Cabeço da Arruda, Cabeço da Amoreira and Moita do Sebastião (central Portugal) have been key sites of archaeological research for 150 years, possibly working as residential sites occupied by semi-sedentary communities during the final Mesolithic. The purposes of this article include the biocultural assessment of metacarpal cortical bone fragility and its associations with age at death, sex and osteoporotic fractures in the Portuguese Mesolithic, as well as a diachronic comparison of cortical bone health in Mesolithic (N = 34) and modern reference (N = 219) samples. Cortical bone at the Muge shell middens displays age and sex-specific trajectories of periosteal apposition and endosteal bone loss, most likely associated with hormonal and behavioural/cultural influences. Metacarpal endocortical bone loss seems to increase with age at death in females, with a simultaneous expansion of the diaphysis. The overall pattern of cortical bone health is similar to the pattern observed in a reference skeletal collection, but elderly women from Muge seem to lose less cortical bone than late twentieth century counterparts from Coimbra. Two older males exhibited vertebral compression fractures, but only one is possibly related with bone fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal S (2008) Light and broken bones: examining and interpreting bone loss and osteoporosis in past populations. In: Katzenberg AK, Saunders S (eds) Biological anthropology of the human skeleton, 2nd edn. Wiley-Liss, New York, pp. 387–410

    Chapter  Google Scholar 

  • Agarwal S, Glencross B, Beauchesne P (2011) Bone growth, maintenance and loss in the Neolithic Community of Çatalhöyük, Turkey: preliminary results. Archaeological Research Facility Laboratory Reports, UC Berkeley

    Google Scholar 

  • Amundsen D, Dyers C (1970) The age of menopause in Classical Greece and Rome. Hum Biol 42:79–86

    Google Scholar 

  • Arnaud JM (1987) Os concheiros mesolíticos dos vales do Tejo e Sado: semelhanças e diferenças. Arqueologia 15:53–64

    Google Scholar 

  • Bicho N, Umbelino C, Detry C et al (2010) The emergence of Muge mesolithic shell middens in central Portugal and the 8200 cal yr BP cold event. J Isl Coast Archaeol 5:86–104

    Article  Google Scholar 

  • Bicho N, Cascalheira J, Marreiros J, et al (2013) Chronology of the Mesolithic occupation of the Muge valley, central Portugal: the case of Cabeço da Amoreira. Quatern Int 308–309:130–139

  • Borgognini SM, Repetto TE (1986) Skeletal indicators of subsistence patterns and activity régime in the Mesolithic sample from Grotta dell’Uzzo (Trapani, Sicily): a case study. Hum Evol 1:331–351. doi:10.1007/BF02436707

    Article  Google Scholar 

  • Brickley M, Mays S, Ives R (2007) An investigation of skeletal indicators of vitamin D deficiency in adults: effective markers for interpreting past living conditions and pollution levels in 18th and 19th century Birmingham, England. Am J Phys Anthropol 79:67–79. doi:10.1002/ajpa

    Article  Google Scholar 

  • Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum Evol 5:227–238

    Article  Google Scholar 

  • Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231–239. doi:10.1002/ajpa.10130

    Article  Google Scholar 

  • Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. Arkansas Archaeological Survey, Arkansas

    Google Scholar 

  • Burger H, Van Daele PL, Grashuis K et al (1997) Vertebral deformities and functional impairment in men and women. J Bone Miner Res 12:152–157

    Article  Google Scholar 

  • Cardoso H, Gomes JEA (2009) Trends in adult stature of peoples who inhabited the modern Portuguese territory from the Mesolithic to the late 20th century. Int J Osteoarchaeol 19:711–725

    Article  Google Scholar 

  • Cardoso JL, Rolão JM (1999–2000) Prospecções e escavações nos concheiros mesolíticos de Muge e Magos (Salvaterra de Magos): contribuição para a história dos trabalhos arqueológicos efectuados. Estudos Arqueológicos de Oeiras 8:83–240

  • Carlson DS, Armelagos GJ, van Gerven DP (1976) Patterns of age related cortical bone loss (osteoporosis) within the femoral diaphysis. Hum Biol 48:295–314

    Google Scholar 

  • Chang W, Wickham H (2016) ggvis: interactive grammar of graphics. http://CRAN.R-project.org/package=ggvis. Accessed 24 May 2016

  • Cho H, Stout SD (2003) Bone remodeling and age-associated bone loss in the past: an histomorphometric analysis of the Imperial Roman skeletal population of Isola Sacra. In: Agarwal SC, Stout S (eds) Bone loss and osteoporosis: an anthropological perspective. Kluwer Academic/Plenum Publishers, New York, pp. 91–101

    Google Scholar 

  • Cho H, Stout SD (2011) Age-associated bone loss and intraskeletal variability in the Imperial Romans. J Anthropol Sci 89:109–125. doi:10.4436/jass.89007

    Google Scholar 

  • Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139

    Article  Google Scholar 

  • Consensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  • Cunha E, Cardoso F (2001) The osteological series from Cabeço da Amoreira (Muge, Portugal. Bull Mem Soc Anthropol Paris 13:323–333

    Google Scholar 

  • Cunha E, Umbelino C (1995) What can bones tell about labour and occupation: the analysis of skeletal markers of occupational stress in the identified skeletal collection of the anthropological Museum of the University of Coimbra (preliminary results). Antropol Port 13:49–68

    Google Scholar 

  • Cunha E, Wasterlain S (2007) The Coimbra identified osteological collections. In: Grupe G, Peters J (eds) Skeletal series and their socio-economic context. Marie Leidorf, GmbH, Rahden/Westf, pp. 23–33

    Google Scholar 

  • Curate F (2011) O perímetro do declínio. Osteoporose e fracturas de fragilidade em três amostras osteológicas identificadas Portuguesas—sécs. XIX & XX. Dissertation, University of Coimbra, Coimbra

  • Curate F (2014a) Osteoporosis and paleopathology: a review. J Anthropol Sci 92:119–146. doi:10.4436/JASS.92003

    Google Scholar 

  • Curate F (2014b) Osteoporosis and nutrition—a paleopathological insight. Antropol Port 30:29–51. doi:10.14195/2182-7982_31_2

    Article  Google Scholar 

  • Curate F, Tavares A (2011) Cifosis vertebral en la pintura de Francisco Goya (1764–1824): un ejercicio de diagnóstico diferencial. In: González Martín A, Cambra-Moo O, Rascón Pérez J, et al (eds) Paleopatología: ciencia multidisciplinar. Sociedad de Ciencias Aranzadi, Donostia-San Sébastian, pp 611–616

  • Curate F, Tavares A, Piombino-Mascali D, et al (2009) Assottigliamento corticale del femore e fratture da fragilità ossea: uno studio della Collezione Scheletrica Identificata di Coimbra (Portogallo). Arch per l’Antropologia e la Etnol CXXXIX:129–146

  • Curate F, Assis S, Lopes C et al (2011) Hip fractures in the Portuguese archaeological record. Anthropol Sci 119:87–93. doi:10.1537/ase.100211

    Article  Google Scholar 

  • Curate F, Cunha E, Matos V et al (2015) Cortical bone loss and osteoporotic fractures in the Coimbra identified skeletal collection. Am J Phys Anthropol 156:114

    Google Scholar 

  • Curate F, Coelho J, Gonçalves D et al (2016a) A method for sex estimation using the proximal femur. Forensic Sci Int 266:579.e1–579.e7. doi:10.1016/j.forsciint.2016.06.011

    Article  Google Scholar 

  • Curate F, Silva TF, Cunha E (2016b) Vertebral compression fractures: towards a standard scoring methodology in paleopathology. Int J Osteoarchaeol 26:366–372. doi:10.1002/oa.2418

    Article  Google Scholar 

  • Dewey J, Armelagos G, Bartley M (1969) Femoral cortical involution in three Nubian archaeological populations. Hum Biol 41:13–28

    Google Scholar 

  • Drusini A, Bredariol S, Carrara N et al (2000) Cortical bone dynamics and age-related osteopenia in a Longobard archaeological sample from three graveyards of the Veneto region (Northeast Italy). Int J Osteoarch 10:268–279

    Article  Google Scholar 

  • Feik SA, Thomas C, Clement JG (1997) Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191:407–416

    Article  Google Scholar 

  • Felsenberg D, Silman AJ, Lunt M et al (2002) Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS. J Bone Miner Res 17:716–724. doi:10.1359/jbmr.2002.17.4.716

    Article  Google Scholar 

  • Ferreira MT, Umbelino C, Cunha E (2015) The Mesolithic skeletons from Muge: the 21st century excavations. In: Bicho N, Detry C, Price TD, Cunha E (eds) Proceedings of the Muge 150th: the 150th anniversary of the discovery of Mesolithic shellmiddens—volume 1. Chapter fifteen. Cambridge Scholars Publishing, Cambridge, pp. 199–208

    Google Scholar 

  • Frayer DW (1977) Dental sexual dimorphism in the European Upper Paleolithic and Mesolithic. J Dent Res 56:871

    Article  Google Scholar 

  • Frayer DW (1980) Sexual dimorphism and cultural evolution in the later Pleistocene and Holocene of Europe. J Hum Evol 9:399–415

    Article  Google Scholar 

  • Garn SM, Frisancho AR, Sandusky ST et al (1972) Confirmation of the sex difference in continuing subperiosteal apposition. Am J Phys Anthropol 36:377–380

    Article  Google Scholar 

  • Gilsanz V, Kovanlikaya A, Costin G et al (1997) Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 82:1603–1607. doi:10.1210/jcem.82.5.3942

    Google Scholar 

  • Ginsburg E, Skaric-Juric T, Kobyliansky E et al (2001) Evidence on major gene control of cortical index in pedigree data from Middle Dalmatia, Croatia. Am J Hum Biol 13:398–408

    Article  Google Scholar 

  • Glencross B, Agarwal SC (2011) An investigation of cortical bone loss and fracture patterns in the neolithic community of Çatalhöyük, Turkey using metacarpal radiogrammetry. J Archaeol Sci 38:513–521. doi:10.1016/j.jas.2010.10.004

    Article  Google Scholar 

  • Gonçalves C (2014) Modelos preditivos de ocupação do território no Mesolítico entre os vales do Tejo e do Sado. Dissertation, University of Algarve, Faro

  • Ives R (2007) An investigation of vitamin d deficiency osteomalacia and age-related osteoporosis in six post-medieval urban collections. Dissertation, University of Birmingham, Birmingham

  • Ives R, Brickley MB (2004) A procedural guide to metacarpal radiogrammetry in archaeology. Int J Osteoarchaeol 17:7–17. doi:10.1002/oa.709

    Article  Google Scholar 

  • Jackes M (forthcoming) Muge Mesolithic heterogeneity: comparing Moita do Sebastião and Cabeço da Arruda. In: Proceedings of MESO 2010, Santander

  • Jackes M, Lubell D (1999) Human biological variability in the Portuguese Mesolithic. Arqueol (Porto) 24:25–42

    Google Scholar 

  • Jackes M, Meiklejohn C (2008) The paleodemography of Central Portugal and Mesolithic-Neolithic transition. In: Bocquet-Appel J-P (ed) Recent advances in paleodemography: data, techniques, patterns. Springer, Berlin, pp. 209–258

    Chapter  Google Scholar 

  • Jackes M, Lubell D, Meiklejohn C (1997) Healthy but mortal: human biology and the first farmers of Western Europe. Antiquity 71:639–658

    Article  Google Scholar 

  • Jepsen K, Andarawis-Puri N (2012) The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate. J Bone Miner Res 27:1916–1926. doi:10.1002/jbmr.1643

    Article  Google Scholar 

  • Jergas M (2008) Radiology of osteoporosis. In: Grampp S (ed) Radiology of osteoporosis. Springer, Berlin, pp 77–103

    Chapter  Google Scholar 

  • Johansson H, Kanis J, Oden et al (2009) BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int 20:1675–1682. doi:10.1007/s00198-009-0845-x

    Article  Google Scholar 

  • Johnell O, Kanis J (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. doi:10.1007/s00198-006-0172-4

    Article  Google Scholar 

  • Kaptoge SK, Dalzell N, Jakes RW et al (2003) Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD. Osteoporos Int 14:941–949

    Article  Google Scholar 

  • Kline RB (2010) Principles and practice of structural equation modeling. The Guildford Press, New York

    Google Scholar 

  • Le Goff J (1985) As doenças têm história. Livros Terramar, Lisboa

  • Lees B, Molleson T, Arnett T, Stevenson J (1993) Differences in proximal femur bone density over two centuries. Lancet 341:673–675

    Article  Google Scholar 

  • Lubell D, Jackes M (1985) Mesolithic-Neolithic continuity: evidence from chronology and human biology. In: Ramos M (ed) Actas da I Reunião do Quaternário Ibérico, pp 113–133

  • Mays S (1996) Age-dependent bone loss in a medieval population. Int J Osteoarch 6:144–154. doi:10.1002/(SICI)1099-1212(199603)6:2<144::AID-OA261>3.0.CO;2-G

    Article  Google Scholar 

  • Mays S (2000) Age-dependent cortical bone loss in women from 18th and early nineteenth century London. Am J Phys Anthropol 112:349–361. doi:10.1002/1096-8644(200007)112:3<349::AID-AJPA6>3.0.CO;2-0

    Article  Google Scholar 

  • Mays S (2001) Effects of age and occupation on cortical bone in a group of 18th–19th century British men. Am J Phys Anthropol 116:34–44. doi:10.1002/ajpa.1099

    Article  Google Scholar 

  • Mays S (2006a) A palaeopathological study of Colles’ fracture. Int J Osteoarchaeol 16:415–428. doi:10.1002/oa.845

    Article  Google Scholar 

  • Mays S (2006b) Age-related cortical bone loss in women from a 3rd–4th century AD population from England. 528:518–528. doi: 10.1002/ajpa

  • Mays S, Lees B, Stevenson J (1998) Age-dependent bone loss in the femur in a medieval population. Int J Osteoarchaeol 8:97–106. doi:10.1002/(SICI)1099-1212(199803/04)8:2<97::AID-OA412>3.0.CO;2-U

    Article  Google Scholar 

  • Mays S, Brickley M, Ives R (2009) Growth and vitamin D deficiency in a population from 19th century Birmingham, England. Am J Phys Anthropol 415:406–415. doi:10.1002/oa

    Google Scholar 

  • Meiklejohn C, Schentag C, Venema A et al (1984) Socioeconomic change and patterns of pathology in the Mesolithic and Neolithic of Western Europe: some suggestions. In: Cohen MN, Armelagos GJ (eds) Paleopathology at the origins of agriculture. Academic, San Diego, pp. 75–100

    Google Scholar 

  • Meiklejohn C, Roksandic M, Jackes M et al (2009) Radiocarbon dating of Mesolithic human remains in Portugal. Mesolithic Miscellany 20:4–16

    Google Scholar 

  • Mendes Corrêa AA (1933) Les nouvelles fouilles à Muge (Portugal). XVe Congrès International d’Anthropologie et d’Archéologie Préhistorique, Paris 1931. Librairie E. Nourry, Paris, pp 1–16

  • Mendes Corrêa AA (1934). Questions du Mésolithique Portugais. Proceedings of the First International Congress of Prehistoric and Protohistoric Sciences, London 1932. Oxford University Press, London, pp 89–91

  • Morais MG (1983) A substituição das gerações em Portugal: análise regional (1930-75. Anal Soc 19:79–99

    Google Scholar 

  • Nieves JW, Formica C, Ruffing J et al (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535. doi:10.1359/JBMR.041005

    Article  Google Scholar 

  • O’Neill TW, Varlow DFJ, Cooper C et al (1996) The prevalence of vertebral deformity in European men and women: the European vertebral osteoporosis study. J Bone Miner Res 11:1010–1018

    Article  Google Scholar 

  • Ortner D (2003) Identification of pathological conditions in human skeletal remains. Academic, San Diego

    Google Scholar 

  • Paula e Oliveira F (1888–1892) Nouvelles fouilles faites dans les Kjoekkenmoeddings de la vallée du Tage. Comunicações da Comissão dos Trabalhos Geológicos de Portugal II:57–81

  • Pavelka M, Fedigan L (1991) Menopause: a comparative life history perspective. Yearb Phys Anthropol 34:13–38

    Article  Google Scholar 

  • Peck J, Stout SD (2007) Intraskeletal variability in bone mass. Am J Phys Anthropol 132:89–97

    Article  Google Scholar 

  • Post J (1971) Ages at menarche and menopause: some medieval authorities. Popul Stud 25:83–87

    Article  Google Scholar 

  • R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 24 May 2016

  • Rewekant A (2001) Do environmental disturbances of an individual’s growth and development influence the later bone involution processes? A study of two mediaeval populations. Int J Osteoarchaeol 11:433–443. doi:10.1002/oa.584

    Article  Google Scholar 

  • Ribeiro MC (1884) Les kioekkenmoeddings de la Vallée du Tage. Compte Rendu de la IXème session du Congrès International d’Anthropologie et d’Archéologie Préhistoriques, Lisbonne 1880. Typographie de l’Académie des Sciences, Lisboa, pp 279–290

  • Roche J, Veiga Ferreira O (1967) Les fouilles récentes dans les amas coquilliers mésolithiques de Muge (1952–1965). O Arquéologo Português I:19–41

  • Rolão JMF (1999) Del Würm final al Holocénico en el Bajo Valle del Tajo (Complejo Arqueológico Mesolítico de Muge). Dissertation, University of Salamanca, Salamanca

  • Ruff CB, Holt B, Niskanen M et al (2015) Gradual decline in mobility with the adoption of food production in Europe. Proc Natl Acad Sci 112:7147–7152. doi:10.1073/pnas.1502932112

    Article  Google Scholar 

  • Samuel SP, Baran GR, Wei Y et al (2009) Biomechanics—part II. In: Khurana JS (ed) Bone pathology. Humana Press, Totowa, pp. 69–77

    Chapter  Google Scholar 

  • Santos AL (1995) Death, sex and nutrition: analysis of the cause of death in the Coimbra human skeletal collection. Antropol Port 13:81–91

    Google Scholar 

  • Schäfer M-L, Pfeil A, Renz DM et al (2008) Effects of long-term immobilisation on cortical bone mass after traumatic amputation of the phalanges estimated by digital X-ray radiogrammetry. Osteoporos Int 19:1291–1299. doi:10.1007/s00198-008-0570-x

    Article  Google Scholar 

  • Schmidt RA (2005) The contribution of gender to personal identity in the Southern Scandinavian Mesolithic. In: Casella EC, Fowler C (eds) The archaeology of plural and changing identities—beyond identification. Kluwer Academic/Plenum Publishers, New York, pp. 79–108

    Chapter  Google Scholar 

  • Seeman E (2003) Invited review: pathogenesis of osteoporosis. J Appl Physiol 95:2142–2151. doi:10.1152/japplphysiol.00564.2003

    Article  Google Scholar 

  • Seeman E (2008) Structural basis of growth-related gain and age-related loss of bone strength. Rheumathology 47:iv2–iv8. doi:10.1093/rheumatology/ken177

    Article  Google Scholar 

  • Silva AM (1995) Sex assesment using the calcaneus and talus. Antropol Port 13:107–119

    Google Scholar 

  • Sofaer J (2004) The body as material culture – A theoretical osteoarchaeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56:289–296. doi:10.1111/j.1556-4029.2010.01635.x

    Article  Google Scholar 

  • Streeten E, Ryan K, McBride DJ et al (2005) The relationship between parity and bone mineral density in women characterized by a homogeneous lifestyle and high parity. J Clin Endocrinol Metab 90:4536–4541. doi:10.1210/jc.2004-1924

    Article  Google Scholar 

  • Szulc P, Seeman E, Duboeuf F et al (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Mineral Res 21:1856–1863. doi:10.1359/jbmr.060904

    Article  Google Scholar 

  • Thompson D, Guness-Hey M (1981) Bone mineral-osteon analysis of Yupik-Inupiaq skel- etons. Am J Phys Anthropol 55:1–7

    Article  Google Scholar 

  • Ulijaszek SJ, Kerr DA (1999) Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 82:165–177

    Article  Google Scholar 

  • Umbelino C (2006) Outros sabores do passado: as análises de oligoelementos e de isótopos estáveis na reconstituição da dieta das comunidades humanas do Mesolítico final e do Neolítico final/Calcolítico do território português. Dissertation, University of Coimbra, Coimbra

  • Umbelino C, Gonçalves C, Figueiredo O et al (2015) Life in the Muge shellmiddens: inferences from the new skeletons recovered from Cabeço da Amoreira. In: Bicho N, Detry C, Price TD, Cunha E (eds) Proceedings of the Muge 150th: the 150th anniversary of the discovery of Mesolithic shellmiddens—volume 1. Chapter sixteen. Cambridge Scholars Publishing, Cambridge, pp. 209–224

    Google Scholar 

  • Van Gerven D, Armelagos G, Bartley M (1969) Roentgenographic and direct measurement of femoral cortical involution in a prehistoric Mississippian population. Am J Phys Anthropol 31:23–38

    Article  Google Scholar 

  • Villotte S, Churchill SE, Dutour OJ et al (2010) Subsistence activities and the sexual division of labor in the European Upper Paleolithic and Mesolithic: evidence from upper limb enthesopathies. J Hum Evol 59:35–43. doi:10.1016/j.jhevol.2010.02.001

    Article  Google Scholar 

  • Virtamä P, Helelä T (1969) Radiographic measurements of cortical bone. Variation in a normal population between 1 and 90 years of age. Acta Radiol (Supplementum) 293:1–268

    Google Scholar 

  • Ward R, Jamison P (1991) Measurement precision and reliability in craniofacial anthropometry: implications and suggestions for clinical applications. J Craniofac Genet Dev Biol 11:156–164

    Google Scholar 

  • Yasaku K, Ishikawa-Takata K, Koitaya N et al (2009) One-year change in the second metacarpal bone mass associated with menopause nutrition and physical activity. J Nutr Heal Aging 13:545–549. doi:10.1007/s12603-009-0105-y

    Article  Google Scholar 

  • Zebaze R, Seeman E (2003) Epidemiology of hip and wrist fractures in Cameroon, Africa. Osteoporos Int 14:301–305

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Miguel Ramalho for allowing us to study the Muge skeletal material housed at Museu do Instituto Geológico e Mineiro; the Serviço de Imagiologia do Centro Hospitalar e Universitário de Coimbra; Célia Gonçalves for the image of the geographical location of the Muge shell middens; Fundação para a Ciência e Tecnologia (grant no. SFRH/BPD/74015/2010); and two anonymous reviewers for their insightful comments that greatly improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Curate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umbelino, C., Curate, F., Perinha, A. et al. Cortical bone loss in a sample of human skeletons from the Muge Shell middens. Archaeol Anthropol Sci 11, 455–467 (2019). https://doi.org/10.1007/s12520-016-0402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-016-0402-4

Keywords

Navigation