Skip to main content

Advertisement

Log in

Upper Palaeolithic archaeobotany of Ghar-e Boof cave, Iran: a case study in site disturbance and methodology

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The excavation of Ghar-e Boof, a cave in the Zagros Mountains, places the site not only at the center of discussion on the transition to and development of its regional lithic tradition: the Rostamian (37,000–31,000 BP), but also in differentiating between plants used by humans or mere traces of the surrounding vegetation. The large pulses of Lathyrus or Vicia sp. recovered from this shallow cave in the southwest of Iran may, for instance, represent food collected from wild stands already in the early Upper Palaeolithic. The seeds of barley (Hordeum sp.), although not all clearly domesticated, are without doubt signs of disturbance or bioturbation since the historic era. Analysis of cave deposits over 30,000 years old raise a number of methodological and interpretive challenges. Human, taphonomic, or biomechanical disturbances impact the deposition of plant remains, as well as affect the composition of the assemblages, undermining spatial and ecological examination of the data set. Comprehension of provenance of the samples, site genesis, and matrix development, through detailed micromorphological and stratigraphical studies, is thus suggested in conjunction with the archaeobotanical analyses, to identify disturbances, define their cause, and treat them appropriately. Numerical studies and ecological interpretations of climate, vegetation composition, or indications of human activity therefore follow specific criteria discussed here. Despite signs of disturbance in the plant assemblages, archaeobotanic research can lead to recognition of environmental conditions, plausible human subsistence, site use and seasonality, and sound vegetation description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison PA, Briggs DEC (eds) (1991) Taphonomy, releasing the data locked in the fossil record

  • Bakels C (1999) Archaeobotanical investigations in the Aisne Valley, northern France, from the Neolithic up to the early Middle Ages. Veg Hist Archaeobot 8:71–77

    Article  Google Scholar 

  • Bar-Yosef O et al (1992) The excavations in Kebara Cave, Mount Carmel. Curr Anthropol 33:497–550

    Article  Google Scholar 

  • Baxter MJ (1994) Exploratory multivariate analysis in archaeology. Edinburgh Univ. Press, Edinburgh

  • Behrensmeyer AK, Kidwell SM, Gastaldo RA (2000) Taphonomy and paleobiology. Paleobiology 26(4):103–147

    Article  Google Scholar 

  • Berggren G (1981) Atlas of seeds from Northern Europe and Scandinavia

  • Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot 15:235–251

    Article  Google Scholar 

  • Bojňansý V, Fargaŝová A (2007) Atlas of seeds and fruits of central and eastern Europe

  • Borojevic K (2011) Interpreting, dating and reevaluation the botanical assemblage from tell Kedesh: a case study of historical contamination. J Archaeol Sci 38:829–842

    Article  Google Scholar 

  • Bottema S (1993) The Palaeoenvironment of prehistoric man in the Near East: some aspects of palynological research. Jpn Rev 4:129–1490

    Google Scholar 

  • Bouby L, Marinval P (2004) Fruits and seeds from Roman cremations in Limagne (Massif Central) and the spatial variability of plant offerings in France. J Archaeol Sci 31:77–86

    Article  Google Scholar 

  • Cappers RTJ, Neef R (2012) Handbook of plant palaeoecology

  • Conard N, Ghasidian E (2011) The Rostamian cultural group and the taxonomy of the Iranian Upper Paleolithic. In: Conard N, Drechsler P, andMorales A (eds) Festschrift in honour of Hans- Peter Uerpmann Between Sand and Sea 33–52

  • Conard N et al (2006) Report on the 2005 survey of the Tübingen Iranian Stone Age research project in the Provinces of Esfahan, Fars and Kohgiluyeh-Boyerahmad. In: Azarnoush M (ed) Archaeological reports, vol 5. ICAR 9–34

  • Djamali M et al (2008) A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quat Res 69:413–420

    Article  Google Scholar 

  • Ellenberg H (1979) Zeigerwerte der Gefäßpflanzen Mitteleuropas

  • Fazeli H (2008) Vegetation history of the SE section of the Zagros Mountains during the last five millennia; a pollen record from the Maharlou Lake, Fars Province, Iran. Veg Hist Archaeobot 18:123–136

    Google Scholar 

  • Ghasidian E (2010) Early Upper Palaeolithic occupation at Ghar-e Boof cave; a reconstruction of Cultural tradition in Southern Zagros Mountains of Iran

  • Gilbert AS (1983) On the origins of specialised nomadic pastoralism in Western Iran. World Archaeol 15(1):105–119

  • Heydari-Guran S (2007) The impact of geology and geomorphology on cave and rockshelter archaeological site formation, preservation and distribution in the Zagros Mountains of Iran. Geoarchaeol Int J 22(6):653–669

    Article  Google Scholar 

  • Heydari-Guran S (2014) Palaeolithic landscapes of Iran. Tübingen publications in prehistory. Kerns Verlag

  • Hillman G, Legge A, Rowley-Conwy P (1997) On the charred seeds from Epipalaeolithic Abu Hureyra: food or fuel? Curr Anthropol 38:651–659

    Article  Google Scholar 

  • Hole F, Woosley A (1978) Pollen evidence of subsistence and environment in ancient Iran. Paléorient 4:59–70

    Article  Google Scholar 

  • Hubbard R, Clapham A (1992) Quantifying macroscopic plant remains. Rev Palaeobot Palynol 73:117–132

    Article  Google Scholar 

  • Johnson D (2002) Darwin would be proud: bioturbation, dynamic denudation, and the power of theory in science. Geoarchaeology 17(1):7–40

    Article  Google Scholar 

  • Jones G (1992) Numerical analysis in archaeobotany. In: Van Zeist, Wasylikowa, Behre (eds) Progress in old world palaeoethnobotany 63–80

  • Kislev M, Nadel D, Carmi I (1992) Epiplaeolithic (19 000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee. Rev Palaeobot Palynol 73:161–166

    Article  Google Scholar 

  • Lange A (1990) De Horden near Wijk bij Duurstede

  • Lev E, Kislev ME, Bar-Yosef O (2005) Mousterian vegetal food in Kebara cave, Mt. Carmel. J Archaeol Sci 33(3):475–484

    Article  Google Scholar 

  • Miksicek CH (1987) Formation processes of the Archaeobotanical record. Adv Archaeol Method Theory 10:211–247

    Google Scholar 

  • Miller NF (1981) Plant remains from Ville Royale II, Susa. Cahiers de la Délégation Archéologique Française en Iran (DAFI) 12:137–142

    Google Scholar 

  • Miller N (1996) Seed eaters of the ancient Near East: human or herbivore? Curr Anthropol 37:521–528

    Article  Google Scholar 

  • Mitka J, Wasylikowa K (1995) Numerical analysis of charred seeds and fruits from an 8000 year old site at Nabta Playa, Western desert, south Egypt. Acta Palaeobotanica 35(1):175–184

    Google Scholar 

  • Nesbitt A (2006) Identification guide for Near Eastern grass seeds

  • Novikova N et al (2011) Ecosystem responses to hydrological regime changes in the steppe zone. Arid Ecosyst 1(3):142–148

    Article  Google Scholar 

  • Piperno D et al (2004) Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430:670–673

    Article  Google Scholar 

  • Popper V (1988) Selecting quantitative measurements in paleoethnobotany

  • Pustovoytov K, Riehl S, Mittmann S (2004) Radiocarbon age of carbonate in fruits of Lithospermum from the early Bronze Age settlement of Hirbet ez-Zeraqōn. Veg Hist Archaeobot 13:207–212

    Article  Google Scholar 

  • Rechinger K (1968) Flora Iranica; flora des Iranischen Hochlandes und der Umrahmenden gebirge; Persien, Afganistan, teile von west-Pakistan, nord Iraq, Azerbaidjan und Turkmenistan 173 Cyperaceae and 48 Boraginacea. Akad. Verl. Anst. Graz

  • Schiffer MB (1983) Toward the identification of formation processes. Am Antiq 48(4):675–706

    Article  Google Scholar 

  • Schilt F (2011) Micromorphology of Upper Palaeolithic and historic sediments from Boof Cave, Iran. Tübingen University, unpublished Master’s thesis

  • Sievers C, Muasya AM (2011) Identification of the sedge Cladium mariscus subsp. jamaicense and its possible use in the Middle Stone Age at Sibudu, KwaZulu-Natal. South Afr Humanit 23:77–86

    Google Scholar 

  • Spicer RA (1980) The importance of depositional sorting to the biostratigraphy of plant megafossils. In: Dilcher DL, Taylor TN (eds) Biostratigraphy of fossil plants - successional and paleoecological analyses. Dowden, Hutchinson and Ross Inc., Stroudsberg, pp 171–183

  • Spicer RA (1991) Plant taphonomic processes. In: Briggs DEG, Allison PA (eds) Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York, pp 71–113

  • Stauffer T (1965) The economics of nomadism in Iran. Middle East J 19(3):284–302

    Google Scholar 

  • Stevens L et al (2001) Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. The Holocene 11(6):747–755

    Article  Google Scholar 

  • van der Veen M (2007) Formation processes of desiccated and carbonized plant remains—the identification of routine practice. J Archaeol Sci 34:968–990

    Article  Google Scholar 

  • van Zeist W, Bakker-Heeres J (1984) Archaeobotanical studies in the Levant 3 Late-Paleolithic Mureybit. Palaeohistoria 26:171–199

    Google Scholar 

  • Wasylikowa K (2005) Palaeoecology of Lake Zeribar, Iran, in the Pleniglacial, Lateglacial and Holocene, reconstructed from plant macrofossils. The Holocene 15:720–735

    Article  Google Scholar 

  • Weeks L (2006) The Neolithic settlement of highland SW IRan: new evidence from the Mamasani District. Iran 44:1–31

    Google Scholar 

  • Weiss E, Wetterstrom W, Nadel D, Bar-Yosef O (2004) The broad spectrum revisited: evidence from plant remains. Proc Natl Acad Sci 101(26):9551–9555

    Article  Google Scholar 

  • Zeidi M et al (2009) Chapter 6. Survey of Dasht e Rostam e Yek and Dasht e Rostam e Do. In: Potts D et al (eds) The Mamasani Archaeological Project stage one 147–168

Download references

Acknowledgements

Unerring gratitude to Harald Hirschprung for his grand medical research. Further thanks to my parents, Saman Heydari-Guran, Katleen Deckers, Paul Goldberg, and Flora Schilt for their support and inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Baines.

Appendix

Appendix

 

Number of specimens

Number of records

IIb

IIb.1

III

IIIa

IIIb

IV

IIb

IIb.1

III

IIIa

IIIb

IV

Alopecurus sp.

16

8

1

1

1

7

1

1

Althaea officinalis

1

1

Asteraceae indet.

2

2

Astragalus sp.

1

1

1

1

Atriplex sp.

2

13

1

1

8

1

Brassicaceae indet.

2

2

Bromium sp.

1

1

Camelina sp.

1

1

Carex sp.

1

6

1

1

3

1

Centaurea sp.

1

1

Cerastium sp.

7

4

Chenopodiaceae indet.

100

44

221

25

18

4

4

8

61

13

9

1

Chenopodium foliosum

2

2

Chenopodium murale

14

28

22

1

3

5

8

1

Chenopodium sp.

21

9

139

14

12

2

2

48

5

4

Chenopodium urbicum

1

1

Cyperaceae indet.

2

5

2

5

Echium cf. vulgare

1

157

20

3

1

58

15

3

Eleusine sp.

1

1

Epilobium cf. palustre

2

2

Fabaceae indet.

17

4

74

9

1

1

2

3

33

5

1

1

Ficus sp.

1

1

1

1

Galium sp.

6

3

6

2

Genista sp.

1

1

1

1

Geranium sp.

1

1

Glaucium sp.

2

2

Helianthemum salicifolium

3

3

3

3

Helianthemum sp.

1

8

1

1

4

1

Heliotropium europeum

1

4

2

1

3

1

Hippocrepis sp.

2

3

16

2

1

3

12

1

Hordeum sp.

45

18

1

11

13

1

Hypericum sp.

1

1

Lallemantia cf. peltata

1

1

Lapulla sp.

2

52

36

94

1

28

9

8

Lathyrus/Vicia sp.

16

2

80

2

14

2

3

1

21

1

3

1

Lepidium sp.

2

1

2

1

Linum sp.

1

1

Lithospermae

10

15

34

1

1

5

19

1

Lolium perenne

1

1

Lolium sp.

3

1

12

1

2

1

4

1

Lotus/Melilotus sp.

2

2

Malva sp.

3

24

2

3

21

1

Medicago sp.

91

80

251

23

6

11

9

66

10

6

Melica sp.

1

1

Minuartia sp.

4

2

1

2

Onobrychis sp.

1

1

Onosma cf. tauricum

16

5

1

9

4

1

Oryza sp.

2

2

Panicum sp.

1

1

1

1

Panicum/SetariaTetrapogon

2

9

4

2

2

7

4

2

Papaver sp.

1

1

Persicaria hydropiper

3

1

1

Phalaris sp.

1

4

1

4

Plantago cf. lagopus

2

3

1

3

Plantago sp.

1

11

1

3

1

11

1

3

Poaceae indet.

6

2

58

6

8

2

2

29

5

6

Polygonaceae indet.

2

3

1

Polygonum aviculare

2

1

Polygonum sp.

1

1

Portulaca oleracea

1

8

1

1

Portulacaceae indet.

11

1

5

1

2

Prunus sp.

6

2

Ranunculus sp.

4

2

2

Reseda cf. lutea

2

15

3

Reseda sp.

23

3

6

1

Rumex sp.

4

4

Salsola cf. laricina

2

2

2

1

Scirpus sp.

68

75

282

61

20

1

10

5

64

7

6

1

Scorpiurus sp.

2

1

6

2

1

5

Scrophularia sp.

1

2

1

1

Silene cf. otitis

1

3

1

3

Silene colorata

1

1

Silene linicola

1

1

Sisymbrium sp.

2

1

2

1

Solanum sp.

1

1

Stellaria sp.

3

1

3

1

Stipa sp.

3

3

Trifolium sp.

2

16

31

1

2

4

18

1

Trigonella sp.

1

3

1

2

Triticum sp.

11

2

3

2

Urtica urens

1

1

Valerianella cf. dentata

1

3

2

1

3

1

Verbascum sp.

1

1

Veronica sp.

1

2

1

Number of samples

17

12

205

35

33

50

      

Number of specimens

437

307

1,687

231

204

10

      

The amount of records means how often the taxa were found in each horizon

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baines, J.A., Riehl, S., Conard, N. et al. Upper Palaeolithic archaeobotany of Ghar-e Boof cave, Iran: a case study in site disturbance and methodology. Archaeol Anthropol Sci 7, 245–256 (2015). https://doi.org/10.1007/s12520-014-0191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-014-0191-6

Keywords

Navigation