Skip to main content
Log in

Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: a possible mantle-derived A-type magma

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Abu Rumeil syenitic rocks represent the inner ring dyke of the Katherina Ring complex, southern Sinai, Egypt. They are divided petrologically into two types, alkali feldspar syenite and quartz syenite. The mineralogy and geochemistry of the syenites indicate an alkaline nature with a shoshonitic affinity. Although rare mafic xenocrysts overgrown by primary K-feldspars and overlapping rare earth element (REE) patterns indicate some role for crustal contamination, the trace element chemistry shows a dominant mantle contribution. The geochronology and field relations imply that the Abu Rumeil syenites were emplaced in a post-collisional, within-plate tectonic setting, yet they express the enrichments in large-ion lithophile elements relative to high field strength elements generally characteristic of subduction influence. We suggest that this signature is inherited from partial melting of a lithospheric mantle source previously affected by subduction during assembly of the Arabian-Nubian Shield. Little evidence of the early evolution of the suite is preserved; there are no associated mafic rocks. We therefore restrict our attention to a petrogenetic model that can explain the relations among the observed felsic composition. The REE patterns of all samples are enriched in light REE and fractionated, but it is notable that there are small positive Eu anomalies in the alkali-feldspar syenites contrasting with small negative Eu anomalies in the quartz syenites. Positive Eu anomalies suggest a cumulate nature for the alkali-feldspar syenites; there are also breaks in the slopes of most variation trends between the alkali-feldspar syenites and the quartz syenites. The general trends in all major oxides and trace elements within the suite can be modeled by fractional crystallization of feldspars—with smaller roles for pyroxene, biotite, apatite, and Fe-Ti oxides—from an intermediate liquid to form the quartz syenites and by assimilation of the near-liquidus phases into the same starting liquid to form the alkali feldspar syenites. The geothermobarometry of pyroxenes and amphiboles suggests shallow emplacement (<10 km depth) and crystallization temperatures ranging from 1100 °C down to 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel Khalek ML, Abdel Maksoud MA, Abdel Tawab MA, Oweiss KA (1994) Geochemistry of the St. Catherine basement rocks, Sinai, Egypt. Sci J Qatar Univ 14:134–145

    Google Scholar 

  • Abdel Maksoud MA, Abdel Khalek ML, Oweiss KA (1993) Geologic setting of the St. Catherine basement rocks, Sinai, Egypt. Sci J Qatar Univ 13:308–318

    Google Scholar 

  • Abdel-Rahman AM (1994) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. J Petro 35:525–541

    Article  Google Scholar 

  • Abdel-Rahmen AM (2006) Petrogenesis of anorogenic peralkaline granitic complexes from eastern Egypt. Mineral Mag 70:27–50

    Article  Google Scholar 

  • Ali BH, Wilde SA, Gabr MMA (2009) Granitoid evolution in Sinai, Egypt, based on precise SHRIMP U-Pb zircon geochronology. Gondwana Res 15:38–48

    Article  Google Scholar 

  • Allen CM, Chappell BW (1992) Association of I-type granites with rift-related alkaline magmatism in Central Coastal Queensland, Australia. Geol Soc Am, Abst Progress 24/7 p. 43

  • Anderson JL, Smith DR (1995) The effects of temperature and ƒO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559

    Article  Google Scholar 

  • Azer MK (2006) The petrogenesis of late Precambrian felsic alkaline magmatism in South Sinai, Egypt. Acta Geol Polonica 56:463–484

    Google Scholar 

  • Azer MK (2007) Tectonic significance of Late Precambrian calc-alkaline and alkaline magmatism in Saint Katherine area, South Sinai, Egypt. Geol Acta 5(3):255–272

    Google Scholar 

  • Azer MK (2013) Late Ediacaran (605-580 Ma) post-collisional alkaline magmatism in the Arabian–Nubian Shield: a case study of Serbal ring-shaped intrusion, southern Sinai, Egypt. J Asian Earth Sci 77:203–223

    Article  Google Scholar 

  • Azer MK, Abu El-Ela FF, Ren M (2012) The petrogenesis of late Neoproterozoic mafic dyke-like intrusion in south Sinai, Egypt. J Asian Earth Sci 54:91–109

    Article  Google Scholar 

  • Azer MK, El-Gharbawy RI (2011) Contribution to the Neoproterozoic layered mafic-ultramafic intrusion of Gabal Imleih, south Sinai, Egypt: implication of post-collisional magmatism in the north Arabian-Nubian Shield. J Afr Earth Sci 60:253–272

    Article  Google Scholar 

  • Azer MK, Obeid MA, Ren M (2014) Geochemistry and petrogenesis of late Ediacaran (580-605 Ma) post-collisional alkaline rocks from Katherina Ring complex, south Sinai., Egypt. J Asian Earth Sci 93:229–252

    Article  Google Scholar 

  • Azer MK, Stern RJ, Kimura J-I (2010) Origin of a Late Neoproterozoic (605±13 Ma) intrusive carbonate-albitite complex in Southern Sinai, Egypt. Int J Earth Sci 99:245–267

    Article  Google Scholar 

  • Be’eri-Shlevin Y, Katzir Y, Whitehouse M (2009) Post-collisional tectono-magmatic evolution in the northern Arabian-Nubian Shield (ANS): time constraints from ion-probe U-Pb dating of zircon. J Geol Soc London 166:71–85

    Article  Google Scholar 

  • Be’eri-Shlevin Y, Samuel MD, Azer MK, Rämö OT, Whitehouse MJ, Moussa HE (2011) The late Neoproterozoic Ferani and Rutig volcano-sedimentary successions of the northernmost Arabian-Nubian Shield (ANS): new insights from zircon U-Pb geochronology, geochemistry and O-Nd isotope ratios. Precambrian Res 188:21–44

    Article  Google Scholar 

  • Bea F, Abu-Anbar M, Montero P, Peres P, Talavera C (2009) The ~844 Ma Moneiga quartz-diorites of the Sinai, Egypt: evidence for Andean-type arc or rift-related magmatism in the Arabian-Nubian Shield? Precambrian Res 175:161–168

    Article  Google Scholar 

  • Bentor YK (1985) The crustal evolution of the Arabo-Nubian Massif with special reference to Sinai Peninsula. Precambrian Res 28:1–74

    Article  Google Scholar 

  • Beyth M, Stern RJ, Altherr R, Kröner A (1994) The late Precambrian Timna igneous complex Southern Israel: evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma. Lithos 31:103–124

    Article  Google Scholar 

  • Black R, Lameyre J, Bonin B (1985) The structural setting of alkaline complexes. J Afr Earth Sci 3:5–16

    Google Scholar 

  • Blundy TD, Holland JJB (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Article  Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granites: experimental constraints. Am Mineral 71:317–324

    Google Scholar 

  • Conceição RV, Green DH (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite-pargasite lherzolite. Lithos 72:209–229

    Article  Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19:163–166

    Article  Google Scholar 

  • Currie KL (1989) New ideas on an old problem: the peralkaline rocks. Geol Soc India Mem 15:117–136

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals. Longman Scientific and Technical, London

    Google Scholar 

  • Eyal M, Litvinovsky B, Jahn BM, Zanvilevich A, Katzir Y (2010) Origin and evolution of post-collisional magmatism: coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chem Geol 269:153–179

    Article  Google Scholar 

  • Eyal M, Zanvilevich AN, Litvinovsky BA, Jahn BM, Vapnik Y, Be'eri-Shlevin Y (2014) The Katherina ring complex (Sinai Peninsula, Egypt): sequence of emplacement and petrogenesis. Am J Sci 314:462–507

    Article  Google Scholar 

  • Farahat ES, Azer MK (2011) Post-collisional magmatism in the northern Arabian-Nubian Shield: the geotectonic evolution of the alkaline suite at G. Tarbush area, south Sinai, Egypt. Chemie der Erde 71:247–266

    Article  Google Scholar 

  • Farahat ES, Mohamed HA, Ahmed AF, El Mahallawi MM (2007) Origin of I- and A-type granitoids from the Eastern Desert of Egypt: implications for crustal growth in the northern Arabian-Nubian Shield. J Afr Earth Sci 49:43–58

    Article  Google Scholar 

  • Friz-Töpfer A (1991) Geochemical characterization of Pan-African dyke swarms in southern Sinai: from continental margin to intraplate magmatism. Precambrian Res 49:281–300

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Garfunkel Z (1999) History and paleogeography during the Pan-African orogen to stable platform transition: reappraisal of the evidence from the Elat area and the northern Arabian-Nubian Shield. Israel J Earth Sci 48:135–157

    Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53(5):875–890

    Article  Google Scholar 

  • Hammarstrom JM, Zen E-A (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Harris NBW (1985) Alkaline complexes from the Arabian Shield. J Afr Earth Sci 3:83–88

    Google Scholar 

  • Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. J Petrol 48:2341–2357

    Article  Google Scholar 

  • Henderson P (1982) Inorganic geochemistry. Pergamon Press, Oxford

    Google Scholar 

  • Hollistaer LS, Grissom GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72:231–239

    Google Scholar 

  • Jahn BM, Litvinovsky BA, Zanvilevich AN, Reichow M (2009) Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos 113:521–539

    Article  Google Scholar 

  • Jarrar GH, Manton WI, Stern RJ, Zachmann F (2008) Late Neoproterozoic A-type granites in the northernmost Arabian-Nubian Shield formed by fractionation of basaltic melts. Chemie der Erde 68:295–312

    Article  Google Scholar 

  • Jung S, Hoffer E, Hoernes S (2007) Neoproterozoic rift-related syenites (Northern Damara Belt, Namibia): geochemical and Nd-Sr-Pb-O isotope constraints for mantle sources and petrogenesis. Lithos 96:415–435

    Article  Google Scholar 

  • Katzir Y, Eyal M, Litvinovsky BA, Jahn BM, Zanilevich AN, Valley JW, Beeri Y, Shimshilashvili E (2007) Petrogenesis of A-type granites and origin of vertical zoning in the Katharina pluton, Gebel Mussa (Mt. Moses) area, Sinai, Egypt. Lithos 95:208–228

    Article  Google Scholar 

  • Kay RW, Mahlburg-Kay S (1991) Creation and destruction of lower continental crust. Geolo Rundsch 80(2):259–278

    Article  Google Scholar 

  • Kessel R, Stein M, Navon O (1998) Petrogenesis of late Neoproterozoic dikes in the northern Arabian-Nubian Shield: implications for the Origin of A-type granites. Precambrian Res 92:195–213

    Article  Google Scholar 

  • Khalil AES, Obeid MA, Azer MK (2015) Late Neoproterozoic post-collisional mafic magmatism in the Arabian–Nubian Shield: a case study from Wadi El-Mahash gabbroic intrusion in southeast Sinai, Egypt. J Afr Earth Sci 105:29–46

    Article  Google Scholar 

  • King PL, White AJR, Chappel BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J Petrol 38:371–391

    Article  Google Scholar 

  • Lameyre J, Bowden P (1982) Plutonic rock type series: discrimination of various granitoids series and related rocks. J Volcanol Geoth Res 14:169–186

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanetin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge, New York

  • Leake BE (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral Mag 61:295–321

    Article  Google Scholar 

  • Leat PT, Thompson RN, Morrison MA, Hendry GL (1998) Silicic magma derived by fractional-crystallization from Miocene minette, Elkhead Mountain, Colorado. Mineral Mag 52:577–585

    Article  Google Scholar 

  • Liégeois JP, Navez J, Black R, Hertogen J (1998) Contrasting origin of post-collision high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45:1–28

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 64:477–493

    Google Scholar 

  • Litvinovsky BA, Jahn BM, Eyal M (2015) Mantle-derived sources of syenites from the A-type igneous suites—new approach to the provenance of alkaline silicic magmas. Lithos 232:242–265

    Article  Google Scholar 

  • Litvinovsky BA, Jahn BM, Zanvilevich AN, Saunders A, Poulain S (2002) Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas. Chem Geol 189:105–133

    Article  Google Scholar 

  • Litvinovsky BA, Tsygankov AA, Jahn BM, Katzir Y, Be'eri-Shlevin Y (2011) Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Palaeozoic postcollisional igneous p0rovince of Transbaikalia (Russia). Lithos 125:845–874

    Article  Google Scholar 

  • Litvinovsky BA, Zanvilevich AN, Wickham SM, Steele IM (1999) Origin of syenite magmas in A-type granitoid series: syenite–granite series fromTransbaikalia. Petrology 7:483–508

    Google Scholar 

  • Lubala RT, Frick C, Roders JH, Walraven F (1994) Petrogenesis of syenites and granites of the Schiel Alkaline Complex, Northern Transvaal, Southern Africa. J Geol 102:307–309

    Article  Google Scholar 

  • McKenzie D, O'Nions RK (1995) The source regions of ocean island basalts. J Petrol 36:133–159

    Article  Google Scholar 

  • McKenzie D, Onions RK (1991) Partial melt distributions from inversion of rare-earth element concentrations. J Petrol 32(5):1021–1091

    Article  Google Scholar 

  • Menuge JF, Brewer TS, Seeger CM (2002) Petrogenesis of metaluminous A-type rhyolites from the St. Francois Mountains, Missouri and the Mesoproterozoic evolution of the southern Laurentian margin. Precambrian Res 113:269–291

    Article  Google Scholar 

  • Mingram B, Trumbull RB, Littman S, Gerstenberger H (2000) A petrogenetic study of androgenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos 54:1–22

    Article  Google Scholar 

  • Miyashiro A (1978) Nature of alkalic rock series. Contrib Mineral Petrol 66:91–104

    Article  Google Scholar 

  • Miyazaki T, Kagami H, Mohan VR, Shuto K, Morikiyo T (2003) Enriched subcontinental lithospheric mantle in the northern part of the South Indian Granulite Terrain: evidence from Yelagiri and Sevattur syenite plutons, Tamil Nadu, South India. Gondwana Res 6:585–594

    Article  Google Scholar 

  • Moghazi AM, Harbi HM, Ali KA (2011) Geochemistry of the Late Neoproterozoic Hadb adh Dayheen ring complex, Central Arabian Shield: implications for the origin of rare-metal-bearing post-orogenic A-type granites. J Asian Earth Sci 42:1324–1340

    Article  Google Scholar 

  • Montel JM, Vielzeul D (1997) Partial melting of greywackes: part II. Composition of minerals and melts. Contrib Mineral Petrol 128:176–196

    Article  Google Scholar 

  • Morag N, Avigad D, Gerdes A, Belousova E, Harlavan Y (2011) Crustal evolution and recycling in the northern Arabian-Nubian Shield: new perspectives from zircon Lu–Hf and U–Pb systematics. Precambrian Res 186:101–116

    Article  Google Scholar 

  • Moreno JA, Molina JF, Montero P, Abu Anbar M, Scarrow JH, Cambeses A, Bea F (2014) Unraveling sources of A-type magmas in juvenile continental crust: constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos 192:56–85

    Article  Google Scholar 

  • Moreno JA, Montero P, Abu Anbar M, Molina JF, Scarrow JH, Talavera C, Cambeses A, Bea F (2012) SHRIMP U-Pb zircon dating of the Katerina Ring Complex: insights into the temporal sequence of Ediacaran calc-alkaline to peralkaline magmatism in southern Sinai, Egypt. Gondwana Res 21:887–900

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13:97–108

    Article  Google Scholar 

  • Mushkin A, Navon O, Halicz L, Heimann A, Hartmann G, Stein M (2003) The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J Petrol 44:815–832

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nachit H, Razafimahefa N, Stussi JM, Carron JP (1985) Composition chimique des biotites et typologie magmatique des granitoides. CR Hebdomadaires Acad sci 301(11):813–818

    Google Scholar 

  • Nachit H, Ibhi A, Abia EH, Ohoud MB (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Compt Rendus Geosci. 337:1415–1420

  • Patchett PJ, Chase CG (2002) Role of transform continental margins in major crustal growth episodes. Geology 30:39–42

    Article  Google Scholar 

  • Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Pub, UK, pp. 230–240

    Google Scholar 

  • Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Pearce JA, Bender JF, et al. (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geoth Res 44:189–229

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putirka K, Tepley F (eds) Minerals, inclusions and volcanic processes. Am Mineral Soc, Washington DC, Rev Mineral Geochem, pp 69:61–120

    Article  Google Scholar 

  • Richard LR (1995) Mineralogical and petrological data processing system. Minpet Software (C):1988–1985 Version 2.02

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Rogers NW, James D, Kelley SP, DeMulder M (1998) The generation of potassic lavas from the eastern Virunga Province, Rwanda. J Petrol 39:1223–1247

    Article  Google Scholar 

  • Samuel MD, Moussa HE, Azer MK (2007) A-type volcanics in Central Eastern Sinai, Egypt. J Afr Earth Sci 47:203–226

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Shellnutt JG, Lee T-Y, Yang CC, Hu S-T, Wu J-C, Iizuka Y (2016) A mineralogical investigation of the Late Permian Doba gabbro, southern Chad: constraints on the parental magma conditions and composition. J Afr Earth Sci 114:13–20

    Article  Google Scholar 

  • Shellnutt JG, Zhou M-F, Zellmer GF (2009) The role of Fe–Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: an example from the Permian Baima igneous complex, SW China. Chem Geol 259:204–217

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Pl Sc 22:319–351

    Article  Google Scholar 

  • Stern RJ (2002) Crustal evolution in the East African Orogen: a neodymium isotopic perspective. J Afr Earth Sci 34:109–117

    Article  Google Scholar 

  • Stern RJ, Gottfried D (1986) Petrogenesis of a Late Precambrian (575-600 Ma) bimodal suite in Northeast Africa. Contrib Mineral Petrol 92:492–501

    Article  Google Scholar 

  • Stern RJ, Voegeli DA (1987) Geochemistry, geochronology, and petrogenesis of a late Precambrian (~590 Ma) composite dike from the North Eastern Desert of Egypt. Geol Rundsch 76:325–341

    Article  Google Scholar 

  • Stevenson R, Upton BGJ, Steenfelt A (1997) Crust mantle interaction in the evolution of the Ilímaussaq Complex, South Greenland: Nd isotopic studies. Lithos 40:189–202

    Article  Google Scholar 

  • Stoeser DW, Frost CD (2006) Nd, Pb, Sr and O isotope characterization of Saudi Arabian Shield terranes. Chem Geol 226:163–188

    Article  Google Scholar 

  • Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of igneous rocks. Neues Jb Miner Abh 136:169–206

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London, pp. 42:313–345

  • Sutcliffe RH, Smith AR, Doherty W, Barnett RL (1990) Mantle derivation of Archean amphibole-bearing granitoid and associated mafic rocks: evidence fromthe southern Superior Province, Canada. Contrib Mineral Petrol 105:255–274

    Article  Google Scholar 

  • Taylor SR, McLennan S (1995) The geochemical composition of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tchameni R, Mezger K, Nsifa NE, Pouclet A (2001) Crustal origin of early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos 57:23–42

    Article  Google Scholar 

  • Thornton CP, Tuttle OF (1960) Chemistry of igneous rocks, I.D. Differentiation Index. Am J Sci 258:664–684

    Article  Google Scholar 

  • Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma; an example from the Padthaway Ridge, South Australia. Lithos 28:151–179

    Article  Google Scholar 

  • Vail JR (1989) Ring complexes and related rocks in Africa. J Afr Earth Sci 8:19–40

    Article  Google Scholar 

  • Vernikovsky VA, Pease VL, Vernikovskaya AE, Romanov AP, Gee DG, Travin AV (2003) First report of early Triassic A-type granite and syenite intrusions from Taimyr: product of the northern Eurasian super plume? Lithos 66:23–36

    Article  Google Scholar 

  • Wang Q, Li JW, Jian P, Zhao ZH, Xiong XL, Bao ZW, Xu JF, Li CF, Ma JL (2005) Alkaline syenites in eastern Cathaysia (South China): link to Permiane-Triassic transtension. Earth Planet Sc Lett 230:339–354

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappel BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Wilson M (1994) Igneous petrogenesis. Chapman & Hall, London

    Google Scholar 

  • Wyborn D (1992) The tectonic significance 496 of Ordovician magmatism in the eastern Lachlan Fold Belt. Tectonophysics 214:177–192

    Article  Google Scholar 

  • Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH, Fan HR (2005) Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chem Geol 214:99–125

    Article  Google Scholar 

  • Ying JF, Zhang HF, Sun M, Tang YJ, Zhou XH, Liu XM (2007) Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton: implication for magma mixing of different sources in an extensional regime. Lithos 98:45–66

    Article  Google Scholar 

  • Zhao J-X, Shiraishi K, Ellis DJ, Sheraton JW (1995) Geochemical and isotopic studies of syenites from the Yamoto Mountains East Antartica: implication for the origin of syenitic magmas. Geochim Cosmochim Ac 59:1363–1385

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are paid to King Saud University, Deanship of Scientific Research, Research Group No. RG-1436-036 for their support. We are indebted to the Geological Sciences Department, National Research Centre, Egypt, for field work assistance. M.A.’s visit to the Division of Geological and Planetary Sciences, California Institute of Technology, USA, was supported by the Cairo Initiative of the US Agency for International Development. Special thanks are given to George Rossman and Michael Baker of Caltech for allowing sample preparation facilities. Our appreciation extends to Minghua Ren (University of Nevada, Las Vegas, USA) and Chi Ma (Caltech) for their help in the microprobe analyses. Special thanks are paid to an anonymous reviewer for constructive comments as well as Editor-in-Chief Abdullah Al-Amri for valuable comments and editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisham Gahlan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahlan, H., Azer, M., Asimow, P. et al. Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: a possible mantle-derived A-type magma. Arab J Geosci 9, 603 (2016). https://doi.org/10.1007/s12517-016-2629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2629-x

Keywords

Navigation