Skip to main content

Advertisement

Log in

Modeling geochemical factors controlling fluoride concentration in groundwater

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The fluoride in groundwater can affect human health. The concentration of fluoride ions in groundwater is influenced by geogenic processes and is limited by the solubility of fluoride-containing minerals, especially fluorite. In this work, we summarize and assess fluorite solubility and the Pitzer interaction model parameters of related species, by which a quantitative model for calculation of the phases and chemical speciation in the Na–Ca–H–F–Cl–SO4–OH–HCO3–CO3–CO2–H2O aqueous system for temperatures 0–100 °C, and a pressure of 1 bar was established. Based on this model, we evaluate factors that govern the levels of fluoride, e.g. temperature, solution composition, pH, CO2 partial pressure, and concentration of carbonate minerals in the aquifer. The fluorite solubility increases with temperature and varies in different aqueous solutions. The fluoride concentration is highest in NaHCO3 type aqueous solutions. In acidic solution, HF is the dominant species, and free fluoride becomes dominant with increasing pH. Dissolved CO2 in solution slightly increases the concentration of fluoride in non-bicarbonate aqueous solution and non-calcite-bearing aquifer systems. In contrast, it has a significant negative effect in calcite and bicarbonate-bearing aquifer systems, where it greatly decreases the fluoride concentration. In calcite-bearing aquifer systems, the fluoride concentration is lower than in non-calcite mineral aquifer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdelgawad AM, Watanabe K, Takeuchi S, Mizuno T (2009) The origin of fluoride-rich groundwater in Mizunami area, Japan—mineralogy and geochemistry implications. Eng Geol 108:76–85

    Article  Google Scholar 

  • Amini M et al (2008) Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol 42:3662–3668

    Article  Google Scholar 

  • Anderson GM (2008) Thermodynamics of natural systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Andersson S, Backstrom G (1987) Thermal conductivity and heat capacity of single-crystal LiF and CaF2 under hydrostatic pressure. J Phys C Solid State Phys 20:5951

    Article  Google Scholar 

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33:13–24

    Article  Google Scholar 

  • Ayenew T (2008) The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environ Geol 54:1313–1324

    Article  Google Scholar 

  • Cartwright I, Weaver T, Tweed S, Ahearne D, Cooper M, Czapnik K, Tranter J (2002) Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem Geol 185:71–91

    Article  Google Scholar 

  • Cetiner ZS, Wood SA, Gammons CH (2005) The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 °C. Chem Geol 217:147–169

    Article  Google Scholar 

  • Chae GT et al (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385:272–283

    Article  Google Scholar 

  • Choi HS, Koh YK, Bae DS, Park SS, Hutcheon I, Yun ST (2005) Estimation of deep-reservoir temperature of CO2-rich springs in Kangwon district, South Korea. J Volcanol Geotherm Res 141:77–89

    Article  Google Scholar 

  • Choi HS, Yun ST, Koh YK, Mayer B, Park SS, Hutcheon I (2009) Geochemical behavior of rare earth elements during the evolution of CO2-rich groundwater: a study from the Kangwon district, South Korea. Chem Geol 262:318–327

    Article  Google Scholar 

  • Christov C, Møller N (2004a) A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature. Geochim Cosmochim Acta 68:3717–3739

    Article  Google Scholar 

  • Christov C, Møller N (2004b) Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature. Geochim Cosmochim Acta 68:1309–1331

    Article  Google Scholar 

  • Criss CM, Millero FJ (1996) Modeling the heat capacities of aqueous 1 − 1 electrolyte solutions with Pitzer’s equations. J Phys Chem 100:1288–1294

    Article  Google Scholar 

  • Deng YM, Nordstrom DK, McCleskey RB (2011) Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation. Geochim Cosmochim Acta 75:4476–4489

    Article  Google Scholar 

  • Dissanayake CB (1991) The fluoride problem in the ground water of Sri Lanka—environmental management and health. Int J Environ Stud 38:137–155

    Article  Google Scholar 

  • Duan ZH, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:257–271

    Article  Google Scholar 

  • Duan ZH, Moller N, Greenberg J, Weare JH (1992) The prediction of methane solubility in natural waters to high ionic strength from 0 to 250 °C and from 0 to 1600 bar. Geochim Cosmochim Acta 56:1451–1460

    Article  Google Scholar 

  • Edmunds WM, Smedley P (2013) Fluoride in natural waters. In: Selinus O (ed) Essentials of medical geology. Springer, Netherlands, pp 311–336

    Chapter  Google Scholar 

  • Ellis A, Mahon W (1964) Natural hydrothermal systems and experimental hot-water/rock interactions. Geochim Cosmochim Acta 28:1323–1357

    Article  Google Scholar 

  • Felmy A, MacLean G (2001) Development of an enhanced thermodynamic database for the Pitzer model in ESP: the fluoride and phosphate components. WTP-RPT-018 Rev. 0. Bechtel National, Inc, Richland

    Google Scholar 

  • Felmy A, Rustad J, Mason M, Bretonne R (1994) A chemical model for the major electrolyte components of the Hanford waste tanks. The binary electrolytes in the system: Na-NO3-NO2-SO4-CO3-F-PO4-OH-Al(OH)4-H2O. Pacific Northwest Lab., Richland, WA (United States). Funding organisation: USDOE, Washington, DC, USA

  • Fouillac C (1983) Chemical geothermometry in CO2-rich thermal waters. Example of the French Massif central. Geothermics 12:149–160

    Article  Google Scholar 

  • Frencken J (1992) Endemic fluorosis in developing countries: causes, effects and possible solutions. TNO Institute for Preventive Health Care

  • Garand A, Mucci A (2004) The solubility of fluorite as a function of ionic strength and solution composition at 25 °C and 1 atm total pressure. Mar Chem 91:27–35

    Article  Google Scholar 

  • Greenberg JP, Møller N (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 °C. Geochim Cosmochim Acta 53:2503–2518

    Article  Google Scholar 

  • Guo QH, Wang YX, Ma T, Ma R (2007) Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor 93:1–12

    Article  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride-containing ground waters in India. Ground Water 13:275–281

    Article  Google Scholar 

  • Harvie CE, Møller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Acta 48:723–751

    Article  Google Scholar 

  • He S, Morse JW (1993) The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90 °C. Geochim Cosmochim Acta 57:3533–3554

    Article  Google Scholar 

  • Jacks G, Bhattacharya P, Chaudhary V, Singh KP (2005) Controls on the genesis of some high-fluoride groundwaters in India. Appl Geochem 20:221–228

    Article  Google Scholar 

  • Jha SK, Mishra VK, Sharma DK, Damodaran T (2011) Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol 211:121–142

    Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput Geosci 18:899–947

    Article  Google Scholar 

  • Katsanou K, Siavalas G, Lambrakis N (2013) Geochemical controls on fluoriferous groundwaters of the Pliocene and the more recent aquifers: the case of Aigion region, Greece. J Contam Hydrol 155:55–68

    Article  Google Scholar 

  • Kurovskaya N, Malinin S (1983) The solubility of CaF2 in aqueous CaCl2-HCl-NaCl solutions at 25–200 °C and determination of CaF2 activity product. Geochem Int 20:13–27

    Google Scholar 

  • Linke WF (1965) Solubilities of inorganic and metalorganic compounds, 4th edn. American Chemical Society

  • Macdonald RW, North NA (1974) The effect of pressure on the solubility of CaCO3, CaF2, and SrSO4 in water. Can J Chem 52:3181–3186

    Article  Google Scholar 

  • Malinin S (1976) Solubility of fluorspar CaF2 in NaCl and HCl solutions under hydrothermal conditions. Geochem Int 13:134–138

    Google Scholar 

  • Malinin S, Kurovskaya N (1979a) Experimental study of equilibria in CaF2-HCl-NaCl-H2O system under hydrothermal conditions. Geokhimiya 1630–1636

  • Malinin S, Kurovskaya N (1979b) Measurement of the solubility of CaF2 in aqueous HCl–NaCl solutions at 25–90 °C. Geokhimiya 5:693–703

    Google Scholar 

  • Marques JM, Andrade M, Carreira PM, Eggenkamp HGM, GraÇA RC, Aires-Barros L, Antunes Da Silva M (2006) Chemical and isotopic signatures of Na/HCO3/CO2-rich geofluids, North Portugal. Geofluids 6:273–287

    Article  Google Scholar 

  • Marshall WL, Franck EU (1981) Ion product of water substance, 0–1000 °C, 1–10,000 bars new international formulation and its background. J Phys Chem Ref Data 10:295–304

    Article  Google Scholar 

  • Mayo AL, Muller AB (1997) Low temperature diagenetic–metamorphic and magmatic contributions of external CO2 gas to a shallow ground water system. J Hydrol 194:286–304

    Article  Google Scholar 

  • Møller N (1988) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high temperature and concentration. Geochim Cosmochim Acta 52:821–837

    Article  Google Scholar 

  • Morozova VA, Rzhechitskii EP (1977) Solubility in the sodium fluoride-sodium bicarbonate-water, sodium fluoride-sodium sulfate-water, and sodium-carbonate sodium fluoride-systems at 0 °C. Russ J Inorg Chem 22:485–486

    Google Scholar 

  • Morse JW, Marion GM (1999) The role of carbonates in the evolution of early Martian oceans. Am J Sci 299:738–761

    Article  Google Scholar 

  • Naylor B (1945) Heat contents at high temperatures of magnesium and calcium fluorides. J Am Chem Soc 67:150–152

    Article  Google Scholar 

  • Nordstrom DK, Jenne EA (1977) Fluorite solubility equilibria in selected geothermal waters. Geochim Cosmochim Acta 41:175–188

    Article  Google Scholar 

  • Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water-rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740

    Article  Google Scholar 

  • Peiper JC, Pitzer KS (1982) Thermodynamics of aqueous carbonate solutions including mixtures of sodium carbonate, bicarbonate, and chloride. J Chem Thermodyn 14:613–638

    Article  Google Scholar 

  • Pitzer KS (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 77:268–277

    Article  Google Scholar 

  • Pitzer KS, Kim JJ (1974) Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J Am Chem Soc 96:5701–5707

    Article  Google Scholar 

  • Pitzer KS, Mayorga G (1973) Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46:1011–1040

    Article  Google Scholar 

  • Rafique T, Naseem S, Usmani TH, Bashir E, Khan FA, Bhanger MI (2009) Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. J Hazard Mater 171:424–430

    Article  Google Scholar 

  • Rao NS, Devadas DJ (2003) Fluoride incidence in groundwater in an area of Peninsular India. Environ Geol 45:243–251

    Article  Google Scholar 

  • Reardon EJ, Wang YX (2000) A limestone reactor for fluoride removal from wastewaters. Environ Sci Technol 34:3247–3253

    Article  Google Scholar 

  • Richardson CK, Holland H (1979a) Fluorite deposition in hydrothermal systems. Geochim Cosmochim Acta 43:1327–1335

    Article  Google Scholar 

  • Richardson CK, Holland H (1979b) The solubility of fluorite in hydrothermal solutions, an experimental study. Geochim Cosmochim Acta 43:1313–1325

    Article  Google Scholar 

  • Ruaya JR, Seward TM (1987) The ion-pair constant and other thermodynamic properties of HCl up to 350 °C. Geochim Cosmochim Acta 51:121–130

    Article  Google Scholar 

  • Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim Cosmochim Acta 52:2009–2036

    Article  Google Scholar 

  • Shock EL, Helgeson HC, Sverjensky DA (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53:2157–2183

    Article  Google Scholar 

  • Silvester LF, Pitzer KS (1978) Thermodynamics of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients. J Solut Chem 7:327–337

    Article  Google Scholar 

  • Sleap SB, Turner BD, Krabbenhoft K, Sloan SW (2013) Effects of pCO(2) on the removal of fluoride from wastewater by calcite. J Environ Eng 139:1053–1061

    Article  Google Scholar 

  • Strübel G (1965) Untersuchungen über die hydrothermal Löslichkeit von Flusspat(CaF2). Geol Rundsch 3:83–95

    Google Scholar 

  • Sverjensky D, Shock E, Helgeson H (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim Cosmochim Acta 61:1359–1412

    Article  Google Scholar 

  • Thurmond V, Millero F (1982) Ionization of carbonic acid in sodium chloride solutions at 25 °C. J Solut Chem 11:447–456

    Article  Google Scholar 

  • Todd S (1949) Heat capacities at low temperatures and entropies of magnesium and calcium fluorides. J Am Chem Soc 71:4115–4116

    Article  Google Scholar 

  • Toghiani RK, Phillips VA, Lindner JS (2005) Solubility of Na-F-SO4 in water and in sodium hydroxide solutions. J Chem Eng Data 50:1616–1619

    Article  Google Scholar 

  • Turner BD, Binning PJ, Sloan SW (2004) The CO2 enhanced removal of fluoride using a calcite permeable reactive barrier. Geochim Cosmochim Acta 68:A460

    Google Scholar 

  • Turner BD, Binning PJ, Sloan SW (2008) A calcite permeable reactive barrier for the remediation of fluoride from spent potliner (SPL) contaminated groundwater. J Contam Hydrol 95:110–120

    Article  Google Scholar 

  • Weber CF, Beahm EC, Lee DD, Watson JS (2000) A solubility model for aqueous solutions containing sodium, fluoride, and phosphate ions. Ind Eng Chem Res 39:518–526

    Article  Google Scholar 

  • World Health Organization (2006) Guidelines for drinking-water quality: first addendum to volume 1, recommendations vol 1. World Health Organization

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant no. 40903028) and the 135 Program of the Institute of Geochemistry, Chinese Academy of Sciences. The authors gratefully acknowledge the constructive comments and suggestions of the anonymous reviewers and editorial handing work of the editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhou, L., Tang, H. et al. Modeling geochemical factors controlling fluoride concentration in groundwater. Arab J Geosci 8, 9133–9147 (2015). https://doi.org/10.1007/s12517-015-1933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1933-1

Keywords

Navigation