Skip to main content
Log in

Application of multifractal modeling technique in systematic lithogeochemical survey to identify Au–Cu anomalies in the Siah-Jangal area, Southeastern of Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Identifying the geochemical anomalies from background is a fundamental task in exploration geochemistry. This research is based on the application of concentration–area (C–A) method at the Siah-Jangal Au porphyry system in southeastern Iran. Lithogeochemical datasets (n = 399) were used in this geochemical survey which was conducted for the exploration for Au mineralization. Moreover, similar surveys were also carried out for As, Cu, and Mo exploration in this region. Anomalous threshold values for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analysis of samples for the lithological units. Several anomalies at a local scale were identified for Au (281 ppb), As (649 ppm), and Cu (20 ppm). The obtained results suggest existence of local Au anomalies that its magnitude generally is above 400 ppb. The C–A log–log plots show existence of three stages of Au and Cu enrichment. The second and most important enrichment event is responsible for the presence of Au at grades above 400 ppb. The obtained results have been interpreted using rather extensive set of information available for the study area, consisting of structural interpretation and alteration data. Various structural features and corresponding alteration show that the geologic structures play an important role in the discrimination of geochemical anomalies and element distribution in the Siah-Jangal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afzal P, Khakzad A, Moarefvand P, Rashidnejad Omran N, Esfandiari B, Fadakar Alghalandis Y (2010) Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor 104:34–46

    Article  Google Scholar 

  • Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108:220–232

    Article  Google Scholar 

  • Afzal P, Dadashzadeh Ahari H, Rashidnejad Omran N, Aliyari F (2013) Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit. NW Iran Ore Geol Rev 55:125–133

    Article  Google Scholar 

  • Afzal P, Alhoseini SH, Tokhmechi B, Kaveh Ahangaran D, Yasrebi AB, Madani N, Wetherelt A (2014) Outlining of high quality coking coal by concentration–volume fractal model and turning bands simulation in East-Parvadeh coal deposit, Central Iran. Int J Coal Geol 127:88–99

    Article  Google Scholar 

  • Agterberg FP, Cheng Q, Brown A, Good D (1996) Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Comput Geosci 22(5):497–507

    Article  Google Scholar 

  • Arias M, Gumiel P, Martin-Izard A (2012) Multifractal analysis of geochemical anomalies: a tool for assessing prospectivity at the SE border of the Ossa Morena zone, Variscan Massif (Spain). J Geochem Explor 122:101–112

    Article  Google Scholar 

  • Berberian F, Muir I, Pankhurst R, Berberian MN (1982) Late cretaceous and early Miocene Andyan-type plutonic activity in northern Makran and central Iran. J Geol Soc Lond 139:605–614

    Article  Google Scholar 

  • Bolviken B, Stokke PR, Feder J, Jossang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109

    Article  Google Scholar 

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS, handbook of exploration and environmental geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Carranza EJM (2009) Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev 35:383–400

    Article  Google Scholar 

  • Chen Y, Zhao P, Chen J, Liu J (2001) Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in Western Shandong Uplift Terrain, Eastern China. Nat Resour Res 10:35–49

    Article  Google Scholar 

  • Cheng QM (1999) Spatial and scaling modeling for geochemical anomaly separation. J Geochem Explor 63(3):175–194

    Article  Google Scholar 

  • Cheng Q (2000) Geo Data Analysis System (GeoDAS) for mineral exploration: user’s guide and exercise manual. Material for the training workshop on GeoDAS held at York University, Toronto, Canada vol.1, 3, p. 204

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province. China Ore Geol Rev 32:314–324

    Article  Google Scholar 

  • Cheng Q (2008) Non-linear theory and power–law models for information integration and mineral resources quantitative assessments. Math Geosci 40:503–532

    Article  Google Scholar 

  • Cheng Q (2012) Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J Geochem Explor 122:55–70

    Article  Google Scholar 

  • Cheng Q, Agterberg FP (1996) Multifractal modeling and spatial statistics. Math Geol 28(1):1–16

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130

    Article  Google Scholar 

  • Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. J Geochem Explor 105:95–105

    Article  Google Scholar 

  • Ellouz-Zimmermann N, Lallemant SJ, Castilla R, Mouchot N, Leturmy P, Battani A et al (2007) Offshore frontal part of the Makran accretionary prism (Pakistan): the Chamak survey. In: Lacombe O, Lavé J, Roure F, Vergés J (eds) Thrust belts and foreland basins: from fold kinematics to hydrocarbon systems: Berlin. Springer-Verlag, Heidelberg, pp 349–363

    Google Scholar 

  • Evertz CJG, Mandelbrot BB (1992) Multifractal measures (appendix B). In: Peitgen H-O, Jurgens H, Saupe D (eds) Chaos and fractals. Springer, New York

    Google Scholar 

  • Farhoudi G, Karige DE (1997) Makran of Iran and Pakistan as an active arc system. Geology 5(11):664–668

    Article  Google Scholar 

  • Ford A, Blenkinsop TC (2008) Evaluation geological complexity and complexity gradients as control on copper mineralization, Mt Isa In lier. Aust J Earth Sci 55:13–23

    Article  Google Scholar 

  • Goncalves MA, Vairinho M, Oliveira V (1998) Study of geochemical anomalies in Mombeja area using a multifractal methodology and geostatistics. In: Buccianti A, Nardi G, Potenza R (eds) IV IAMG’98. De Frede, Ischia Island, pp 590–595

    Google Scholar 

  • Goncalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modeling. J. Geochem. Explor 72, 91–114.

  • Grando G, McClay K (2007) Morphotectonic domains and structural styles in the Makran accretionary prism, offshore Iran. Sediment Geol 196:157–179

    Article  Google Scholar 

  • Grunsky E, Smee B (1999) Differentiation of soil types and mineralization from multielement geochemistry using multivariate methods and digital topography. J Geochem Explor 67(1–3):289–302

    Google Scholar 

  • Gumiel P, Sanderson DJ, Arias M, Roberts S, Martín-Izard A (2010) Analysis of the fractal clustering of ore deposits in the Spanish Iberian Pyrite Belt. Ore Geol Rev 38:307–318

    Article  Google Scholar 

  • Harris JR, Wilkinson L, Grunsky G, Heather K, Ayer J (1999) Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario. J Geochem Explor 67:301–334

    Article  Google Scholar 

  • Harris JR, Grunsky EC, Wilkinson L (2000) Effective use and interpretation of lithogeochemical data in regional exploration programs. Ore Geol Rev 16:107–143

    Article  Google Scholar 

  • Hashemi M, Afzal P (2013) Identification of geochemical anomalies by using of number–size (N–S) fractal model in Bardaskan area, NE Iran. Arab J Geosci 6(12):4785–4794

    Article  Google Scholar 

  • Hassanpour S, Afzal P (2011) Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system NW Iran. Arab J Geosci. doi:10.1007/s12517-011-0396-2

    Google Scholar 

  • Kavoshgaran Consulting Engineers Company (2003) Poly-metal exploration in the Chahoun-Siahhangal area. Research Institute and Application of minerals in Iran

  • Kavoshgaran Consulting Engineers Company (2006) Final report, preliminary exploration of gold in the Siah-jangal area. Research Institute and Application of Minerals in Iran

  • Li Q, Cheng Q (2004) Fractal singular-value (eigen-value) decomposition method for geophysical and geochemical anomaly reconstruction. Earth Sci-China Univ, Geosci 29:109–118, In Chinese with English Abstract

    Google Scholar 

  • Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77:167–175

    Article  Google Scholar 

  • Lima A, De Vivo B, Cicchella D et al (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy). Campania Reg Appl Geochem 18:1853–1865

    Article  Google Scholar 

  • Lima A, De Vivo B, Tarvainen T et al (2008) Interpolation methods for geochemical maps: a comparative study using arsenic data from European stream waters. Geochem Explor Environ Anal 8:41–48

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W. H. Freeman, San Fransisco, p 468

    Google Scholar 

  • Mehrpartoo M, Padiar F (2003) Geological map of Taftan, 1:100,000 Series. Geological Survey of Iran, Tehran

    Google Scholar 

  • Pazand K, Hezarkhani A, Ataei M, Ghanbari Y (2011) Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: a case study from Ahar, Azarbaijan, Northwest Iran. Chem Erde 71:397–402

    Article  Google Scholar 

  • Perello J, Razique A, Schloderer J, Rehman A (2008) The chagai porphyry copper belt, Baluchistan

  • Rafiee A (2005) Separating geochemical anomalies in stream sediment media by applying combination of fractal concentration–area model and multivariate analysis (Case study: Jeal-e-Barez 1:100,000 Sheet, Iran). 20th World Mining Congress Proceeding, Iran, pp. 461–470

  • Rowan L, Schmidt R, Mars J (2006) Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sens Environ 104:74–87

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Sim BL, Agterberg FP, Beaudry C (1999) Determining the cutoff between background and relative base metal contamination levels using multifractal methods. Comput Geosci 25:1023–1041

    Article  Google Scholar 

  • Singer DA, Kouda R (2001) Some simple guides to finding useful information in exploration geochemical data. Nat Resour Res 10:137–147

    Article  Google Scholar 

  • Taghizadeh N (1996) Reports of prospections in Baluchestan,. Geological survey of Iran, Internal Repts, 1996

  • Tirrul R, Bell I, Griffis R, Camp V (1983) The Sistan Suture zone of eastern Iran. Geol Soc Am Bull 94:134–150

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wang G, Carranza EJM, Zuo R, Hao Y, Yangsong D, Pang Z, Qu J (2012) Mapping of district-scale potential target using fractal models. J Geochem Explor 122:34–46

    Article  Google Scholar 

  • Wei S, Pengda Z (2002) Theoretical study of statistical fractal model with applications to mineral resource prediction. Comput Geosci 28:369–376

    Article  Google Scholar 

  • Zarcan Minerals I.N.C. June Company (2003) Final report of Balouchestan exploration project on exploration and base line date studies for selected areas to be retained. Vancover, Canada: Eds. Baker, E. and Reimchen, T.H.F

  • Zuo R (2011) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet. China Appl Geochem 26:S271–S273

    Article  Google Scholar 

  • Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to charactrization of vertical distribution of geochemical element concentration. J Geochem Explor 102:37–43

    Article  Google Scholar 

  • Zuo R, Carranza EJM, Cheng Q (2012) Fractal/multifractal modelling of geochemical exploration data. J Geochem Explor 122:1–3

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Dr Peyman Afzal in Science and Research Branch at Islamic Azad University of Tehran for helpful discussions and suggestions. Also, the authors highly appreciate two anonymous reviewers for the critical and constructive comments which greatly contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, Z., Boomeri, M. & Bagheri, S. Application of multifractal modeling technique in systematic lithogeochemical survey to identify Au–Cu anomalies in the Siah-Jangal area, Southeastern of Iran. Arab J Geosci 8, 9517–9530 (2015). https://doi.org/10.1007/s12517-015-1860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1860-1

Keywords

Navigation