Skip to main content
Log in

Depositional environment and stability of the porcelanite within the Ypresian phosphatic series of the Gafsa-Metlaoui basin, southwestern Tunisia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Ypresian porcelanite levels outcrop from the central to the western part of Gafsa-Metlaoui basin are valuable for the geological environment reconstitutions and the industrial applications, as a siliceous industrial filtration aids like diatomite. The present work aims to determine the mineralogical and geochemical characteristics of porcelanites levels and provides some data about their depositional environment. Thus, 29 specimens are sampled from these levels. The XRD data show that all samples are composed mainly of opal CT, clay minerals (smectite, sepiolite, palygorskite), and carbonates (calcite and dolomite), which contain also trace amount of clinoptilolite, feldspar, francolite, quartz, and pyrite. The variations of opal CT and carbonates percentages are in the opposite trends. These results agree with chemical composition of major elements determined by XRF and inductively coupled plasma mass spectrometry, which indicates that the selected samples are characterized by high SiO2 (64 %) and relatively low CaO (11 %) contents. Plot of SiO2 vs. CaO and of SiO2 vs. MgO show negative linear correlations indicating that the depositional conditions favor carbonate dissolution but encourage the formation of opal CT and vice versa. Therefore, carbonate dissolution increases Mg activity of the depositional environment, privileged then the opal CT agglomeration as lepispheres coated by microcalcite. Since, increasing Mg content is required for the autogenesis of Mg-rich fibrous clays and encourages the stability of opal CT, although the high Mg content avoids chert formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abercrombie HJ, Hutcheon IE, Bloch JD, Decaritat P (1994) Silica activity and the smectite-illite reaction. Geology 22:539–542

    Article  Google Scholar 

  • Ahmadi R, Ouali J, Mercier M, Mansy JL, Van-Vliet Lanoe B, Launeau P, Farhat R, Rafini S (2006) The geomorphologic responses to hinge migration in the fault-related folds in the Southern Tunisian Atlas. J Struct Geol 28:721–772

    Article  Google Scholar 

  • Bedir M (1995) Mécanismes géodynamiques des bassins associés aux couloirs de coulissements de la marge atlasique de la tunisie. Thèse de doctorat Es-Science ; Univ. Tunis II. Fac. Sci. Tunis

  • Belayouni H (1983) Etude de la matière organique dans la série phosphatée du bassin de Gafsa Metlaoui (Tunisie) Application à la compréhension des mécanismes de la phosphatogenèse. Thèse d’état : 205pp

  • Ben Hassen A (2008) Données nouvelles sur la matière organique associée aux séries du bassin phosphaté du sud-tunisien (Gisement de Ras-Draâ) et sur la phosphatogenèse. Thèse, Univ. Orleans: 369 pp + Annexes

  • Berger WH, von Rad U (1972) Cretaceous and Cenozoic sediments from the Atlantic Ocean. Initial Report DSDP 14:787–954

    Google Scholar 

  • Bernoullia D, Gunzenhauser B (2001) A dolomitized diatomite in an Oligocene_Miocene deep-sea fan succession, Gonfolite Lombarda Group, Northern Italy. Sediment Geol 139:71–91

    Article  Google Scholar 

  • Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397:508–512

    Article  Google Scholar 

  • Boukadi N (1994) Structuration de l’Atlas de la Tunisie; signification géométrique et cinématique des noeuds de la zone d’interférences. Structurales au contact des grands couloirs tectoniques. Ph.D. Thesis, Tunis II University, Tunisia: 148 pp

  • Bridget Y, Lynne Kathleen Campbell A, Moore JN, Browne PRL (2005) Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A. Sediment Geol 179:249–278

    Article  Google Scholar 

  • Brindly G.W, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical society, 495 pp

  • Burollet PF (1956) Contribution à l'étude stratigrafique de la Tunisie centrale. Thèse Doct. Es Sciences, Paris. Ann Mines Geol Tunis, 350 pp

  • Burollet PF, Oudin JL (1980) Paléocène en Tunisie-Pétrole et phosphate. In: Géologie comparée des gisements de phosphate et de pétrole. Mémoire du BRGM: 116 pp

  • Castany G (1951) Contribution à l’étude stratigraphique de la Tunisie centrale. (Thèse Alger), Ann. Mines Geol. Tunis 18: 350 pp

  • Chaabani F (1995) Dynamique de la partie orientale du bassin de Gafsa au Crétacé et au Paléogène: Etude minéralogique et géochimique de la série phosphatée éocène (Tunisie méridionale). Thèse d’Etat. Université Tunis II. Faculté des Sciences de Tunis: 428 pp

  • Chaabani F, Ounis A (2008) Sequence stratigraphy and depositional environment of phosphorite deposits evolution: case of the Gafsa basin. Tunisia. Intern. Geol. Cong, Oslo

    Google Scholar 

  • Compton JS, Locke SD, (1992) Diagenesis of clay and silica minerals in sediment from the Argo basin, Northeastern India ocean (Site 765). Proceedings of the Ocean Drilling Program, Scientific Results, 123. p. 57-75

  • Danelian T, Martin SS, Blanc-Valleron MM (2007) Middle Eocene radiolarian and diatom accumulation in the equatorial Atlantic (Demerara Rise, ODP Leg207). Possible links with climatic and palaeoceanographic changes. C R Palevol 6:103–114

    Article  Google Scholar 

  • Dapples EC (1979) Silica as an agent in diagenesis. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks. Developments in sedimentology 25A. Elsevier, New York, pp 99–141

    Chapter  Google Scholar 

  • Dirk R (2000) Dissolution kinetics of biogenic silica in marine environments. Thesis modified version. At the Graduate School “Dynamik globaler Stoffkreisläuf im System Erde”. der Abteilung Marine Umweltgeologie des Geomar. Geowissenschaften der Christian-Albrechts-University: 234 pp

  • Eversuel LG, Ferrell R (2008) Disordered silica with tridymite-like structure in the Twiggs clay. Am Mineral 93(4):565–572

    Article  Google Scholar 

  • Fabricius IL, Borre MK (2007) Stylolites, porosity, depositional texture, and silicates in chalk facies sediments. Ontong Java Plateau-Gorm and Tyra fields North Sea. Sedimentology 54:183–205

    Article  Google Scholar 

  • Fauconnier D, Slansky M (1979) Relation entre le développement des Dinoflagélés et la sédimentation phosphatée du basin de Gafsa (Tunisie):Géologie comparée des gisements de phosphates et de pétrole, Colloque international, Orléans, 6-7 novembre, Document du B.R.G.M., n° 24: 1980

  • Felhi M (2010) Les niveaux intercalaires de la série yprésienne du bassin Gafsa-Metlaoui: Apports de la minéralogie des argiles et de la géochimie de la matière organique résiduelle à la reconstitution paléoenvironnementale. Thèse de Doctorat, Université de Sfax. FSS: 170 pp

  • Felhi M, Tlili A, Montacer M (2008) Geochemistry, petrographic and spectroscopic studies of organic matter of clay associated kerogen of Ypresian series: Gafsa-Metlaoui phosphatic basin, Tunisia. Resour Geol 59:428–436

    Article  Google Scholar 

  • Flandrin J (1948) Contribution à l’étude stratigraphique du Nummulitique algérien. Bulletin du Service de la carte géologique, Algérie, (2ème série, p 19)

  • Gingele FX, Schulz HD (1993) Authigenic zeolites in Late Pleistocene sediments of the South Atlantic (Angola Basin). Mar Geol 111:121–131

    Article  Google Scholar 

  • Gowran BM (1989) Silica burp in the Eocene ocean. Geology 17:857–860

    Article  Google Scholar 

  • Haj Ahmed A, Ali T, Zalat AA, Jeddoui Y (2014) Fossil diatoms from endogangue of the Ypresian phosphatic pellets of the Gafsa-Metlaoui basin: implication on the origin of biogenicand d silica epositional environment. Arab J Geosci. doi:10.1007/s12517-013-1253-2

    Google Scholar 

  • Henchiri M (2007) Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin (southern Tunisia). J Afr Earth Sci 49:187–200

    Article  Google Scholar 

  • Henchiri M (2009) Les facies siliceux éocène, bassin de Gafsa, (Tunisie Méridionale), Sédimentologie, minéralogie, et transformation diagénitique. Thèse de Doctorat en Géologie, Université Tunis El Manar, p 134

    Google Scholar 

  • Henchiri M, Fattah N (2014) Extent of diagenetic transformations in severely altered biogenic silica deposits from Tunisia: new insights from mineralogy and geochemistry. Arab J Geosci 7:1179–1186

    Article  Google Scholar 

  • Hesse R (1988) Origin of chert, I. Diagenesis of biogenic siliceous sediment. Geoscience Canada, (Diagenesis) 15:171–192

    Google Scholar 

  • Huggett JM, Gale AS, Wray DS (2005) Diagenetic clinoptilolite and opal-CT from the Middle Eocene Wittering Formation, Isle of Wight, U.K. J Sediment Res 75:585–595

    Article  Google Scholar 

  • James NP, Bone Y (2000) Eocene cool-water carbonate and biosiliceous sedimentation dynamics, St Vincent Basin, South Australia. Sedimentology 47:761–786

    Article  Google Scholar 

  • Kametaka M, Takebe M, Nagai H, Zhu S, Takayanagi Y (2005) Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: a continental shelf radiolarian chert. Sediment Geol 174:197–222

    Article  Google Scholar 

  • Karpoff AM, Destrigneville C, Stille P (2007) Clinoptilolite as a new proxy of enhanced biogenic silica productivity in lower Miocene carbonate sediments of the Bahamas platform: isotopic and thermodynamic evidence. Chem Geol 245:285–304

    Article  Google Scholar 

  • Kastner M (1981) Authigenic silicates in the deep-sea sediments: formation and diagenesis. In: Emiliani C (ed) The sea. Wiley, New York, pp 915–980

    Google Scholar 

  • Kastner M, Gieskes JM (1982) Opal-A to opal-CT transformation: a kinetic study. In: Iijima A, Hein JR, Siever R (eds) Siliceous deposits in the Pacific Region. Developments in sedimentology, vol 36. Elsevier, New York, pp 211–227

    Chapter  Google Scholar 

  • Kastner M, Keene JB, Gieskes JM (1977) Diagenesis of siliceous oozes. I. Controls on the rate of opal-A to opal-CT transformation—an experimental study. Geochim Cosmochim Acta 41:1041–1059

    Article  Google Scholar 

  • Laschet C (1984) On the origin of cherts. Facies 10(1):257–289

    Article  Google Scholar 

  • Lawrence MJF (1989) Chert and dolomite in the Amuri limestone group and woolshed formation, eastern Marlboroug, New Zealand. PhD thesis. University of Canterbury: 612 pp

  • Loucaides S (2009) Dissolution of biogenic silica: roles of pH, salinity, pressure, electrical charging and reverse weathering. PhD thesis, Utrecht University, Faculty of Geosciences 137 pp

  • Madsen HB, Stemmerik L, Surlyk F (2010) Diagenesis of silica-rich mound-bedded chalk, the Coniacian Arnager Limestone, Denmark. Sediment Geol 223:51–60

    Article  Google Scholar 

  • Marin J (2009) Composition isotopique de l'oxygène et du silicium dans les cherts Précambriens : Implications Paléo-environnementales, Thèse de Doctorat en Géosciences, Université Nancy à Lorraine: 402 pp

  • McBride EF, Abdel-Wahab A, Ahmed Reda A, El-Younsy M (1999) Origin of spheroidal chert nodules, Drunka Formation (lower Eocene), Egypt. Sedimentology 46:733–755

    Article  Google Scholar 

  • Nagase T, Akizuki M (1997) Texture and structure of opal-C in volcanic rocks. Can Mineral 35:947–958

    Google Scholar 

  • Önal M, Sarikaya Y (2007) The effect of heat treatment on the paracrystallinity of an opal-CT found in a bentonite. J Non-Cryst Solids 353:4195–4198

    Article  Google Scholar 

  • Önal M, Kahraman S, Sarıkaya Y (2007) Differentiation of α-cristobalite from opals in bentonites from Turkey. Appl Clay Sci 35:25–30

    Article  Google Scholar 

  • Ounis A (2011) Apport de la géochimie des Terres Rares et des isotopes pour la compréhension des mécanismes de la phosphatogenèse : exemple de la partie occidentale du bassin de Gafsa-Métlaoui, Thèse de Doctorat en Géologie, Université Tunis El Manar, 214 pp

  • Ounis A, Koscis L, Pfeifer HR, Chaabani F (2006) Rare earth elements abundance in Tunisian phosphorites. 4th Swiss Geoscience Meeting, 24 et 25 Novembre 2006; Berne, Suisse

  • Ounis A, Koscis L, Chaabani F, Pfeifer HR (2008a) Rare earth element and stable isotope geochemistry (δ13C and δ18O) of phosphorite deposits in the Gafsa Basin, Tunisia. In Revue Palaeogeography, Palaeoceanography, Palaeoecology 268: issue 1-2, 1-18

  • Ounis A, Koscis L, Chaabani F, Pfeifer HR (2008b) Oxygen isotopic composition of shark teeth and coprolites as a proxy for climatic evolution during the deposition of Tunisian Paleogene phosphorite sediments. International Geological Congress, 6 et 14 August 2008. Oslo, Norvege

  • Pletsch T (2001) Palaeoenvironmental implications of palygorskite clays in Eocene deep-water from the Western Central Atlantic. Pp. 308-317. In: D. Kroon, R.D. Norris, and A. Klaus (Eds) Western North Atlantic Paleogene and Cretaceous Palaeooceanography. Special Publication, 183, Geological Society, London

  • Riech V (1979) Diagenesis of silica, zeolites, and phyllosilicates at sites 397 and 398. In: von Rad, V., Ryan, W.B.F. Initial Reports of the Deep Sea Drilling Project 47 Part 1: 741-759

  • Riech V, von Rad U (1979) Silica diagenesis in the Atlantic Ocean: diagenetic potential and transformations. In: Talwani M, Hay W, Ryan WBF (Eds), Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment. M. Ewing Series 3, Am Geophysic Union pp 315–340

  • Saidi R (2007) Etude minéralogique et pétrophysique des cherts du bassin phosphaté de Gafsa-Metlaoui et perspective de valorisation industrielle. Mastère GAREN. Université de Sfax: 91 pp

  • Saidi R, Tlili A, Fourati A, Ammar N, Ounis A, Fattah N, Jamoussi F (2011) Variation de la composition minéralogique des niveaux cherteux de la série Yprésienne du bassin de Gafsa Métlaoui. Les 4èmes Journées Tunisiennes de Géologie Appliquée (Sousse, Tunisie, Mars 2011)

  • Saidi R, Tlili A, Fourati A, Ammar N, Ounis A, Jamoussi F (2012) Granulometric distribution of natural and flux calcined chert from Ypresian phosphatic series of Gafsa-Metlaoui basin compared to diatomite filter aid. IOP Conf. Series: Mater Sci Eng 28:1–8

    Google Scholar 

  • Sassi S (1974) La sédimentation phosphatée au paléocène dans le Sud et dans le Centre Ouest. PhD Thesis, Université Paris Orsay: 224 pp

  • Steinberg M (1981) Biosiliceous sedimentation, radiolarite periods and silica budget fluctuations, in: Proc. 26th IGC, Geology of Oceans Symp., Oceanol. Acta: 149-154

  • Tlili A, Felhi M, Montacer M (2010) Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, southwestern Tunisia. Clay Clay Miner 58(4):573–584

    Article  Google Scholar 

  • Tlili A, Felhi M, Fattah N, Montacer M (2011) Mineralogical and geochemical studies of Ypresian marly clays and silica rocks of phosphatic series, Gafsa-Metlaoui basin, southwestern Tunisia: implication for depositional environment. Geosci J 15(1):53–64

    Article  Google Scholar 

  • Tlili A, Saidi R, Fourati A, Ammar N, Jamoussi F (2012) Mineralogical study and properties of natural and flux calcined porcelanite from Gafsa-Metlaoui basin compared to diatomaceous filtration aids. Appl Clay Sci 62–63:47–57

    Article  Google Scholar 

  • Tribble JS, Arvidson RS, Lane M, Mackenzie FT (1995) Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems. Sediment Geol 95:11–37

    Article  Google Scholar 

  • Wilkin RT, Barnes HL (1998) Solubility and stability of zeolites in aqueous solution: I. Analcime, Na- and K-clinoptilolite. Am Mineral 83:746–761

    Google Scholar 

  • Williams LA, Crerar DA (1985) Silica digenesis. II. General mechanisms. J Sed Petrol 55:312–321

    Google Scholar 

  • Williams LA, Parks GA, Crerar DA (1985) Silica digenesis. I. Solubility controls. Journal of Sedimentary Petrology 55:301–311

    Google Scholar 

  • Zaïer A, Beji-Sassi A, Sassi S, Moody RTJ (1998) Basin evolution and deposition during the Early Paleocene in Tunisia. In: Macgregor DS, Moody RTJ, Clark-Lowes DD (Eds.), 1998. Petroleum Geology of North Africa. Geol. Soc. London Spec. Publ. 132: p 375-393

  • Zargouni F (1985) Tectonique de l’Atlas Méridional de Tunisie: evolution géométrique et cinématique des structures en zone de cisaillement. Revue Sc Terre Tn 3:304

    Google Scholar 

  • Zargouni F, Chaouachi A, Sliman F, Boukadi N, Bedir M, Zarai N (1995) Carte tectonique du bassin de Gafsa. CPG

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Saidi or A. Tlili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, R., Felhi, M., Tlili, A. et al. Depositional environment and stability of the porcelanite within the Ypresian phosphatic series of the Gafsa-Metlaoui basin, southwestern Tunisia. Arab J Geosci 8, 5223–5237 (2015). https://doi.org/10.1007/s12517-014-1552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1552-2

Keywords

Navigation