Skip to main content

Advertisement

Log in

Prospection of Au mineralization based on stream sediments and lithogeochemical data using multifractal modeling in Alut 1:100,000 sheet, NW Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Alut 1:100,000 sheet is located in the Sanandaj-Sirjan structural zone, NW Iran, which contains Au-Ag (Cu) mineralization. The aim of this research is to separate geochemical anomalies using concentration-number (C-N) multifractal modeling based on stream sediments and lithogeochemical data. Results obtained from the C-N method indicated the main anomalies of Au, Ag, Cu, and As accumulated in the central and eastern parts of the area which are associated with meta-volcanic and granitic rocks. Correlation between the elemental highly intensive anomalies and geological particulars consisting of alteration zones and faults revealed that the main Au anomalies are in the central and eastern parts of the Alut 1:100,000 sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afzal P, Fadakar Alghalandis Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108:220–232

    Article  Google Scholar 

  • Afzal P, Fadakar Alghalandis Y, Moarefvand P, Rashidnejad Omran N, Asadi Haroni H (2012) Application of power–spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. J Geochem Explor 112:131–138

    Article  Google Scholar 

  • Afzal P, Dadashzadeh Ahari H, Rashidnejad Omran N, Aliyari F (2013) Delineation of gold mineralized zones using concentration-volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geol Rev 55:125–133

    Article  Google Scholar 

  • Agterberg FP (1995) Multifractal modelling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37:1–8

    Article  Google Scholar 

  • Aliyari F, Rastad E, Mohajjel M, Arehart GB (2009) Geology and geochemistry of d-O-C isotope systematics of the Golgoleh gold deposit, northwestern Iran: implications for ore genesis. Ore Geol Rev 36:306–314

    Article  Google Scholar 

  • Aliyari F, Rastad E, Mohajjel M (2012) Gold deposits in the Sanandaj–Sirjan Zone: orogenic gold deposits or intrusion-related gold systems? Resour Geol 62(3):296–315

    Article  Google Scholar 

  • Bolviken B, Stokke PR, Feder J, Jossang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109

    Article  Google Scholar 

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry, vol 11. Elsevier, Amsterdam, pp 1–351

    Google Scholar 

  • Cheng Q (1999) Spatial and scaling modeling for geochemical anomaly separation. J Geochem Explor 65:175–194

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130

    Article  Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology. Wiley, New York, pp 1–638

    Google Scholar 

  • Deng J, Wang Q, Yang L, Wang Y, Gong Q, Liu H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. J Geochem Explor 105:95–105

    Article  Google Scholar 

  • Hassanpour S, Afzal P (2013) Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab J Geosci 6:957–970

    Article  Google Scholar 

  • Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper and Row, New York, pp 1–415

    Google Scholar 

  • Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration, 2nd edn. Academic, New York, pp 1–657

    Google Scholar 

  • Heidari SM, Ghaderi M, Afzal P (2013) Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au–Ag (Cu) deposit, NW Iran. J Appl Geochem 31:119–132

    Article  Google Scholar 

  • Li CJ, Ma TH, Shi JF (2003) Application of a fractal method relating concentration and distances for separation of geochemical anomalies from background. J Geochem Explor 77:167–175

    Article  Google Scholar 

  • Makovicky E, Topa D, Tajeddin H, Putz H, Zagler G (2013) Ferdowsiite: a new mineral from the Barika ore deposit, Iran. Can Mineral 51(5):727–734

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, San Francisco, pp 1–468

    Google Scholar 

  • Monecke T, Monecke J, Herzig PM, Gemmell JB, Monch W (2005) Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals. Earth Planet Sci Lett 232:363–378

    Article  Google Scholar 

  • Pazand K, Hezarkhani A, Ataei M, Ghanbari Y (2011) Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: a case study from Ahar, Azarbaijan, Northwest Iran. Chem Erde 71:397–402

    Article  Google Scholar 

  • Ranjbar H, Shahriari H, Honarmand M (2003) Comparison of ASTER and ETM+ data for exploration of porphyry copper mineralization: a case study of Sar Cheshmeh areas, Kerman, Iran. Map Asia Conference, Kuala Lumpur

  • Rantitsch G (2000) Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry. J Geochem Explor 71:73–82

    Article  Google Scholar 

  • Sabine C (1999) Remote sensing strategies for mineral exploration. In: Rencz A (ed) Manual of remote sensing, vol 3. Wiley and Sons Inc, New York, pp 375–447

    Google Scholar 

  • Sadeghi B, Moarefvand P, Afzal P, Yasrebi AB, Daneshvar Saein L (2012) Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor 122:9–19

  • Sadeghi B, Khalajmasoumi M, Afzal P, Moarefvand P, Yasrebi AB, Wetherelt A, Foster P, Ziazarifi A (2013) Using ETM+ and ASTER sensors to identify iron occurrences in the Esford 1:100000 mapping sheet of Central Iran. J Afr Earth Sci 85:103–114

    Article  Google Scholar 

  • Sim BL, Agterberg FP, Beaudry C (1999) Determining the cutoff between background and relative base metal contamination levels using multifractal methods. Comput Geosci 25:1023–1041

    Article  Google Scholar 

  • Turcotte DL (1986) A fractal approach to the relationship between ore grade and tonnage. Econ Geol 18:1525–1532

    Google Scholar 

  • Wang QF, Deng J, Wan L, Zhao J, Gong QJ, Yang LQ, Zhou L, Zhang ZJ (2008) Multifractal analysis of the element distribution in karn-type deposits in Shizishan Orefield in Tongling area, Anhui province, China. Acta Geol Sin 82:896–905

    Google Scholar 

  • Wang QF, Deng J, Liu H, Wang Y, Sun X, Wan L (2011) Fractal models for estimating local reserves with defferent mineralization qualities and spatial variations. J Geochem Explor 108:196–208

  • Yarmohammadi A, Rastad E, Mohajjel M, Shamsa MJ (2008) Barika gold mineralization, a gold-rich volcanogenic massive sulfide deposit in Iran. J Sci Univ Tehran 34(1):47–61

    Google Scholar 

  • Zuo R (2011a) Identifying geochemical anomalies associated with Cu and Pb-Zn Skarn mineralization using principal component analysis and spectrum-area fractal modelling in the Gangdese Belt, Tibet (China). J Geochem Explor 111:13–22

    Article  Google Scholar 

  • Zuo R (2011b) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26:S271–S273

    Article  Google Scholar 

  • Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102(1):37–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.A., Afzal, P., Sadeghi, B. et al. Prospection of Au mineralization based on stream sediments and lithogeochemical data using multifractal modeling in Alut 1:100,000 sheet, NW Iran. Arab J Geosci 8, 3867–3879 (2015). https://doi.org/10.1007/s12517-014-1436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1436-5

Keywords

Navigation