Skip to main content
Log in

A framework toward developing a groundwater conceptual model

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Developing an accurate conceptual model is the most important step in the process of a groundwater numerical modeling. Disorganized and limited available data and information, especially in the developing countries, make the preparation of the conceptual model difficult and sometimes cumbersome. In this research, an integrative and comprehensive method is proposed to develop groundwater conceptual model for an unconfined aquifer. The proposed method consists of six steps. A preliminary step (step 0) is aimed at collecting all the available data and information. The output of the first step as “controlling observations” is conceptual model version 00. This step should be rigorously checked due to its critical role in the controlling of final conceptual model. Step 2 determines the aquifer geometry. The output of this step is conceptual model version 01. Step 3 is responsible to determine hydrodynamic properties and its output develops conceptual model version 02. Step 4 evaluates the surface and subsurface interactions and lateral in/out groundwater flows. The output of this step is conceptual model version 03. Step 5 is to integrate the results from other steps and to deliver the final conceptual model version. The accuracy level of the conceptual model and the annual groundwater balance is also determined at this step. The presented groundwater conceptual model procedure was implemented for the Neishaboor plain, Iran. Results showed its usefulness and practicality in developing the conceptual model for the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahuja LR, Cassel DK, Bruce RR, Barnes BB (1989) Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci 148:404–411

    Article  Google Scholar 

  • Allison GB, Barnes CJ, Hughes MW, Leany IWJ (1984) Effects of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Isotope hydrology. International Atomic Energy Agency, Vienna, pp 105–123

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling, simulation of flow and advective transport. Academic, San Diego

    Google Scholar 

  • Barazzuoli P, Nocchi M, Rigati R, Salleolini M (2008) A conceptual and numerical model for groundwater management: a case study on a coastal aquifer in southern Tuscany, Italy. Hydrogeol J 16:1557–1576. doi:10.1007/s10040-008-0324-z

    Article  Google Scholar 

  • Bedekar V, Niswonger RG, Kipp K, Panday S, Tonkin M (2012) Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW. Ground Water 187–198

  • Bredehoeft J (2003) From models performance assessment: the conceptualization problem. Ground Water 41(5):571–577. doi:10.1111/j.1745-6584.2003.tb02395.x

    Article  Google Scholar 

  • Bredehoeft J (2005) The conceptualization model problem—surprise. Hydrogeol J 13(1):37–46. doi:10.1007/s10040-004-0430-5

    Article  Google Scholar 

  • Bredehoeft J, Hall P (1995) Ground-water models. Ground Water 33:530–531

    Article  Google Scholar 

  • Bredenkamp DB, Botha LJ, Van Tonder GJ, Van Rensburg HJ (1995) Manual on quantitative estimation of groundwater recharge and aquifer storativity. WRC Report No TT 73/95

  • Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210. doi:10.1029/WR022i002p00199

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227. doi:10.1029/WR022i002p00211

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten L (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222. doi:10.1007/s10040-004-0404-7

    Article  Google Scholar 

  • Dewandel B, Gandolfi JM, de Condappa D, Ahmed S (2008) An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale. Hydrol Process 22:1700–1712

    Article  Google Scholar 

  • Egboka BCE, Uma KO (1986) Comparative analysis of transmissivity and hydraulic conductivity values from the Ajali aquifer system of Nigeria. J Hydrol 83:185–196

    Article  Google Scholar 

  • English PM, Lewis SJ, Dyall A, Sandow J, Coram JE (2007) 3D groundwater conceptual model pilot project. Feasibility report for the condamine alliance. Geoscience Australia, Queensland

    Google Scholar 

  • EPA, DOE, NRC, (1994) A technical guide to ground-water model selection at sites contaminated with radioactive substances, EPA 402-R-94-012, Washington, DC

  • Freeze R (1975) A stochastic–conceptual analysis of one–dimensional groundwater flow in non–uniform, homogeneous media. Water Resour Res 11(5):725–741

    Article  Google Scholar 

  • Gelhar LW (1986) Stochastic subsurface hydrology from theory to applications. Water Resour Res 22(9):135S–145S

    Article  Google Scholar 

  • Gerla PJ, Matheney RK (1996) Seasonal variability and simulation of groundwater flow in a Prairie Wetland. Hydrol Processes 10:903–920

    Article  Google Scholar 

  • Gieske ASM (1992) Dynamics of groundwater recharge: a case study in semi-arid eastern Botswana. PhD thesis, Vrije Universiteit, Amsterdam, 289 pp

  • Gillespie J, Nelson ST, Mayo AL, Tingey DG (2012) Why conceptual groundwater flow models matter: a trans-boundary example from the arid Great Basin, western USA. Hydrogeology Journal DOI 10.1007/s10040-012-0848-0

  • Griffith DH (1976) Application of electrical resistivity measurements for the determination of porosity and permeability in sandstones. Geoexploration 14(3–4):207–213

    Article  Google Scholar 

  • Hamm SY, Cheong JY, Jang S, Jung CY, Kim BS (2005) Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea. J Hydrology 310:111–121

    Article  Google Scholar 

  • Hill M, Cooley R, Pollock D (1998) A controlled experiment in ground water flow model calibration. Ground Water 36(3):520–535. doi:10.1111/j.1745-6584.1998.tb02824.x

    Article  Google Scholar 

  • Højberg A, Refsgaard J (2005) Model uncertainty—parameter uncertainty versus conceptual models. Water Sci Technol 52(6):177–186

    Google Scholar 

  • Izady A, Davari k, Ghahraman B, Alizadeh A, Sadeghi M, Moghaddamnia A (2012) Application of panel-data modeling to predict groundwater levels in the Neishaboor Plain, Iran. Hydrogeol J 20(3):435–447. doi:10.1007/s10040-011-0814-2

    Article  Google Scholar 

  • Jabro JD (1992) Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Trans ASAE 35:557–560

    Article  Google Scholar 

  • Johnson AI (1967) Specific yield-compilation of specific yields for various materials. U.S. Geological Survey, Water Supply Paper 1662-D, 74 p.

  • Jusseret S, Tam VT, Dassargues A (2009) Groundwater flow modelling in the central zone of Hanoi, Vietnam. Hydrogeol J 17:915–934. doi:10.1007/s10040-008-0423-x

    Article  Google Scholar 

  • Kelly WE (1977) Geoelectric sounding for estimating aquifer hydraulic conductivity. Ground Water 15(6):420–425

    Article  Google Scholar 

  • Lohman SW (1972) Ground-water hydraulics. US Geol Surv Prof Paper 708:45–46

    Google Scholar 

  • Louis I, Karantonis G, Voulgaris N, Louis F (2004) Geophysical methods in the determination of aquifer parameters: the case of Mornos river delta, Greece. Res J Chem Environ 18(4):41–49

    Google Scholar 

  • Meinzer OE (1923) The occurrence of groundwater in the United States with a discussion of principles. US Geol Surv Water-Supply Pap 489, 321 pp

  • Meinzer OE, Stearns ND (1929) A study of groundwater in the Pomperaug Basin, Conn. with special reference to intake and discharge. US Geol Surv Water-Supply Pap 597B:73–146

    Google Scholar 

  • Meyer PD, Gee GW (1999) Groundwater conceptual models of dose assessment codes. Presented at U.S. NRC Workshop on Ground-Water Modeling Related to Dose Assessment, Rockville, Maryland

  • Meyer P, Ye M, Rockhold M, Neuman S, Cantrell K. (2007) Combined estimation of hydrogeologic conceptual model parameter and scenario uncertainty with application to uranium transport at the Hanford site 300 area, Rep. NUREG/CR-6940 PNNL-16396, U.S. Nucl. Regul. Comm., Washington, D. C.

  • Moore C, Doherty J (2005) Role of the calibration process in reducing model predictive error. Water Resour Res 41, W05020, doi:10.1029/2004WR003501

  • Nastev M, Rivera A, Lefebvre R, Martel R, Savard M (2005) Numerical simulation of groundwater flow in regional rock aquifers, southwestern Quebec, Canada. Hydrogeol J 13:835–848. doi:10.1007/s10040-005-0445-6

    Article  Google Scholar 

  • Neuman SP (1988) A proposed conceptual framework and methodology for investigating flow and transport in Swedish crystalline rocks. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, September, Arbetsrapport 88-37, 39 pp

  • Neuman S (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Environ Res Risk Assess 17(5):291–305. doi:10.1007/s00477-003-0151-7

    Article  Google Scholar 

  • Neuman S, Wierenga P. (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites, Rep. NUREG/CR-6805, U.S. Nucl. Regul. Comm., Washington, DC

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805, prepared for US Nuclear Regulatory Commission, Washington, DC

  • Palma HC, Bentley LR (2007) A regional-scale groundwater flow model for the Leon–Chinandega aquifer, Nicaragua. Hydrogeol J 15:1457–1472. doi:10.1007/s10040-007-0197-6

    Article  Google Scholar 

  • Pinder GF, Celia MA (2006) Subsurface hydrology. Wiley, Hoboken

    Book  Google Scholar 

  • Poeter E, Anderson D (2005) Multimodel ranking and inference in ground water modeling. Ground Water 43(4):597–605. doi:10.1111/j.1745-6584.2005.0061.x

    Article  Google Scholar 

  • Razack M, Huntley D (1991) Assessing transmissivity from specific capacity in a large and heterogeneous alluvial aquifer. Ground Water 29(6):856–861

    Article  Google Scholar 

  • Refsgaard J, Van der Sluijs J, Brown J, Van der Keur P (2006) A framework for dealing with uncertainty due to model structure error. Adv Water Resour 29(11):1586–1597. doi:10.1016/j.advwatres.2005.11.013

    Article  Google Scholar 

  • Reilly TE, (2001) System and boundary conceptualization in ground-water flow simulation. Techniques of water-resources investigations of the U.S. Geological Survey, Book 3, Applications of Hydraulics, Chapter B8, Reston, Virginia

  • Rojas R, Feyen L, Dassargues A (2008) Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour Res 44, W12418, doi:10.1029/2008WR006908

  • Rojas R, Feyen L, Batelaan O, Dassargues A (2010) On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling. Water Resour Res, 46, W08520, doi:10.1029/2009WR008822

  • Rojas R, Kahunde S, Peeters L, Okke B, Feyen L, Dassargues A (2010b) Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modeling. J Hydrol 394:416–435

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. doi:10.1007/s10040-0010176-2

    Article  Google Scholar 

  • Seifert D, Sonnenberg T, Scharling P, Hinsby K (2008) Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability. Hydrogeol J 16(4):659–674. doi:10.1007/s10040-007-0252-3

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal 10:52–67. doi:10.1007/s10040-001-0170-8

    Article  Google Scholar 

  • Theis CV, Brown RH, Meyer RR (1963) Estimating the transmissivity of aquifers from the specific capacity of wells. In: R. Bental (ed) Methods of determining permeability, transmissivity, and drawdown. U.S. Geol. Surv. Water Supply Paper 1536-1, pp. 331–340.

  • Uma KO, Egboka BCE, Onuoha KM (1989) New statistical grain-size method for evaluating the hydraulic conductivity of sandy aquifers. J Hydrol 108:367–386

    Article  Google Scholar 

  • Vandenberg A (1982) An alternative conceptual model of groundwater flow. J Hydrol 57:187–201

    Article  Google Scholar 

  • Varni MR, Usunoff EJ (1999) Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeol J 7:180–187

    Article  Google Scholar 

  • Velayati S, Tavassloi S (1991) Resources and problems of water in Khorasan province. Astan Ghods Razavi, Mashhad (In Persian)

    Google Scholar 

  • Wheater, H. S. 2010. Hydrological processes, groundwater recharge and surface–water/groundwater interactions in arid and semi-arid areas. In: Wheater HS, Mathias SA, Li X (eds) Groundwater modeling in arid and semi-arid areas, 1st ed. Cambridge University Press, Cambridge, pp. 5–37

  • Xu Y, Beekman HE (2003) Groundwater recharge estimation in Southern Africa. UNESCO IHP Series No. 64, UNESCO Paris. ISBN 92-9220-000-3

  • Ye M, Karl FP, Jenny BC, Greg MP, Donald MR (2010) A model-averaging method for assessing groundwater conceptual model uncertainty. Ground Water 48(5):716–728

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank Prof. Mary Anderson from the Department of Geoscience of University of Wisconsin for her insightful suggestions and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Izady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izady, A., Davary, K., Alizadeh, A. et al. A framework toward developing a groundwater conceptual model. Arab J Geosci 7, 3611–3631 (2014). https://doi.org/10.1007/s12517-013-0971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0971-9

Keywords

Navigation