Skip to main content

Advertisement

Log in

Systems, Physics, and Instrumentation of PET/MRI for Cardiovascular Studies

  • PET/MR Imaging (V Dilsizian and T Schindler, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the years 2011–2014, three different whole-body PET/MRI hybrid systems from different vendors have been introduced to the market. While this rather new hybrid imaging modality is primarily used in clinical oncologic and neurologic hybrid imaging, cardiovascular applications are now gaining broader utilization. Cardiovascular hybrid imaging with PET/MRI is especially challenging because the independent data acquisition with PET and MRI is to be synchronized to breathing and cardiac motion to fully make use of the diagnostic potential inherent to this new hybrid method.

Recent Findings

New methodological developments and refinements in attenuation, truncation, and motion correction for PET/MRI further improve overall image quality and PET quantification in cardiovascular imaging applications. The rather complex hybrid imaging workflow integrating motion correction techniques is further streamlined to facilitate usability and to increase the diagnostic application spectrum.

Summary

Instrumentation and methodology over the recent years have matured to a level that PET/MRI today is a powerful addition to the palette of hybrid imaging modalities in cardiovascular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53:845–55.

    Article  PubMed  Google Scholar 

  2. Quick HH, von Gall C, Zeilinger M, Wiesmüller M, Braun H, Ziegler S, Kuwert T, Uder M, Dörfler A, Kalender WA, Lell M. Integrated whole-body PET/MR hybrid imaging: clinical experience. Investig Radiol. 2013;48:280–9.

    Article  Google Scholar 

  3. Quick HH. Integrated PET/MR. J Magn Reson Imaging. 2014;39:243–58.

    Article  PubMed  Google Scholar 

  4. • Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, Heusch P, Nassenstein K, Bockisch A, Forsting M, Schlosser T. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268:366–73. One of the first original studies showing feasibility and providing first results of cardiac PET/MRI. The study demonstrated high intra-individual agreement in patients investigated in cardiac PET/CT and PET/MRI

    Article  PubMed  Google Scholar 

  5. Schlosser T, Nensa F, Mahabadi AA, Poeppel TD. Hybrid MRI/PET of the heart: a new complementary imaging technique for simultaneous acquisition of MRI and PET data. Heart. 2013;99:351–2.

    Article  PubMed  Google Scholar 

  6. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54:402–15.

    Article  CAS  PubMed  Google Scholar 

  7. Nensa F, Schlosser T. Cardiovascular hybrid imaging using PET/MRI. Rofo. 2014;186:1094–101.

    Article  PubMed  Google Scholar 

  8. Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J, Nassenstein K, Schlosser T. Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol. 2016.

  9. •• Robson PM, Dweck MR, Trivieri MG, Abgral R, Karakatsanis NA, Contreras J, Gidwani U, Narula JP, Fuster V, Kovacic JC, Fayad ZA. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging. 2017; doi:10.1016/j.jcmg.2016.09.029. Recent original study providing impressive results and insight into the methodological challenges of performing advanced cardiovascular PET/MRI. The study emphasizes the need for further improved attenuation correction and motion correction techniques in cardiovascular PET/MRI

    Google Scholar 

  10. Boellaard R, Quick HH. Current image acquisition options in PET/MR. Semin Nucl Med. 2015;45:192–200. Review

    Article  PubMed  Google Scholar 

  11. • Beyer T, Lassen ML, Boellaard R, Delso G, Yaqub M, Sattler B, Quick HH. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. MAGMA. 2016;29:75–87. Recently published original study that provides an overview of the attenuation correction techniques on all three currently available clinical PET/MRI systems. The clinical available state-of-the-art in AC was investigated in an intra-individual, inter-system study setup

    Article  PubMed  Google Scholar 

  12. Nekolla SG, Martinez-Moller A. Attenuation correction in cardiac PET: to raise awareness for a problem which is as old as PET/CT. J Nucl Cardiol. 2015;22:1296–9.

    Article  PubMed  Google Scholar 

  13. Nekolla SG, Cabello J. The foundation layer of quantitative cardiac PET/MRI: attenuation correction. Again J Nucl Cardiol. 2016 Feb;23 [Epub ahead of print]

  14. Lairez O, Robson PM, Fayad ZA. Time to move to PET-MR for cardiovascular imaging. J Nucl Cardiol. 2016;23:1112–3.

    Article  PubMed  Google Scholar 

  15. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.

    Article  PubMed  Google Scholar 

  16. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639–47.

    PubMed  Google Scholar 

  17. Lecomte R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging. 2009;32:S69–85.

    Article  Google Scholar 

  18. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maus J, Schramm G, Hofheinz F, Oehme L, Lougovski A, Petr J, Platzek I, Beuthien-Baumann B, Steinbach J, Kotzerke J, van den Hoff J. Evaluation of in vivo quantification accuracy of the Ingenuity-TF PET/MR. Med Phys. 2015;42:5773–81.

    Article  PubMed  Google Scholar 

  20. Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, et al. A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.

    Article  CAS  PubMed  Google Scholar 

  21. Iagaru A, Mittra E, Minamimoto R, Jamali M, Levin C, Quon A, Gold G, Herfkens R, Vasanawala S, Gambhir SS, Zaharchuk G. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med. 2015;40:1–8.

    Article  PubMed  Google Scholar 

  22. Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys. 2016;43:2334.

    Article  PubMed  Google Scholar 

  23. Levin CS, Maramraju SH, Khalighi MM, Deller TW, Delso G, Jansen F. Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging. 2016;35:1907–14.

    Article  PubMed  Google Scholar 

  24. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  PubMed  Google Scholar 

  25. Delso G, Martinez-Möller A, Bundschuh RA, Ladebeck R, Candidus Y, Faul D, Ziegler SI. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol. 2010;55:4361–74.

    Article  CAS  PubMed  Google Scholar 

  26. Paulus D, Braun H, Aklan B, Quick HH. Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils. Med Phys. 2012;39:4306–15.

    Article  PubMed  Google Scholar 

  27. Paulus DH, Tellmann L, Quick HH. Towards improved hardware component attenuation correction in PET/MR hybrid imaging. Phys Med Biol. 2013;58:8021–40.

    Article  CAS  PubMed  Google Scholar 

  28. Wollenweber SD, Delso G, Deller T, Goldhaber D, Hüllner M, Veit-Haibach P. Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging. MAGMA. 2014;27:149–59. Review

    Article  PubMed  Google Scholar 

  29. • Paulus DH, Quick HH. Hybrid positron emission tomography/magnetic resonance imaging: challenges, methods, and state of the art of hardware component attenuation correction. Investig Radiol. 2016;51:624–34. Recently published study that provides an overview and meta-analysis of the current literature regarding attenuation correction of hardware components (e.g. radiofrequency coils). Various current AC methods and the results of their impact on PET quantification are presented and discussed

    Article  Google Scholar 

  30. Kartmann R, Paulus DH, Braun H, Aklan B, Ziegler S, Navalpakkam BK, Lentschig M, Quick HH. Integrated PET/MR imaging: automatic attenuation correction of flexible RF coils. Med Phys. 2013;40:082301.

    Article  PubMed  Google Scholar 

  31. Eldib M, Bini J, Calcagno C, Robson PM, Mani V, Fayad ZA. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging. Investig Radiol. 2014;49:63–9.

    Article  CAS  Google Scholar 

  32. Eldib M, Bini J, Robson PM, Calcagno C, Faul DD, Tsoumpas C, Fayad ZA. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging. Phys Med Biol. 2015;60:4705–17.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beyer T, Weigert M, Quick HH, Pietrzyk U, Vogt F, Palm C, et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging. 2008;35:1142–6.

    Article  PubMed  Google Scholar 

  34. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Schölkopf B. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52:1392–9.

    Article  PubMed  Google Scholar 

  35. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schäfer WM, Brockmann H, Krohn T, Buhl A, Günther RW, Mottaghy FM, Krombach GA. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    Article  CAS  PubMed  Google Scholar 

  36. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 2012; 53:796–804.

  37. Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ. MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med. 2013;43:45–59.

    Article  PubMed  Google Scholar 

  38. Keereman V, Holen RV, Mollet P, Vandenberghe S. The effect of errors in segmented attenuation maps on PET quantification. Med Phys. 2011;38:6010–9.

    Article  PubMed  Google Scholar 

  39. Kim JH, Lee JS, Song IC, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med. 2012;53:1878–82.

    Article  PubMed  Google Scholar 

  40. Marshall HR, Prato FS, Deans L, Theberge J, Thompson RT, Stodilka RZ. Variable lung density consideration in attenuation correction of whole-body PET/MRI. J Nucl Med. 2012;53:977–84.

    Article  PubMed  Google Scholar 

  41. • MCJ L, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, Novak E, Priatna A, Gropler RJ, Woodard PK. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol. 2016; doi:10.1007/s12350-015-0197-1. Recent study that investigates the impact of attenuation correction specifically in cardiac PET/MRI. Thirty patients were investigated in both cardiac PET/CT and PET/MRI. The authors found that the standard uptake values in PET of the myocardium shows excellent correlation between PET/CT and PET/MRI

    Google Scholar 

  42. • Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging. 2015;42:1574–80. Recent study that investigates the impact of attenuation correction specifically in cardiac PET/MRI (see also reference #41). Like reference #41, this study demonstrates highly comparable myocardial PET quantification obtained from MR-based attenuation corrected PET/MRI compared to standard CT-based attenuation correction in PET/CT, suggesting interchangeability of both AC techniques

    Article  PubMed  Google Scholar 

  43. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, von Schulthess GK, Kuhn FP. PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.

    Article  PubMed  Google Scholar 

  44. Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med. 2013;27:152–62.

    Article  CAS  PubMed  Google Scholar 

  45. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51:812–8.

    Article  PubMed  Google Scholar 

  46. Johansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011;38:2708–14.

    Article  PubMed  Google Scholar 

  47. Larsson A, Johansson A, Axelsson J, Nyholm T, Asklund T, Riklund K, Karlsson M. Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images. MAGMA. 2013;26:127–36.

    Article  PubMed  Google Scholar 

  48. Navalpakkam BK, Braun H, Kuwert T, Quick HH. Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Investig Radiol. 2013;48:323–32.

    Article  Google Scholar 

  49. Grodzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med. 2012;67:510–8.

    Article  PubMed  Google Scholar 

  50. Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit-Haibach P, Delso G, Shanbhag DD. Zero TE MR bone imaging in the head. Magn Reson Med. 2016;75:107–14.

    Article  PubMed  Google Scholar 

  51. Leynes AP, Yang J, Shanbhag DD, Kaushik SS, Seo Y, Hope TA, Wiesinger F, Larson PE. Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Med Phys. 2017 Jan 23; doi:10.1002/mp.12122.

    PubMed  Google Scholar 

  52. Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Hermosillo G, Faul D, Boada F, Friedman KP, Koesters T. Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med. 2015;56:1061–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Delso G, Martinez-Möller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phys. 2010;37:2804–12.

    Article  PubMed  Google Scholar 

  54. Schramm G, Langner J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, Platzek I, van den Hoff J. Influence and compensation of truncation artifacts in MR-based attenuation correction in PET/MR. IEEE Trans Med Imaging. 2013;32:2056–63.

    Article  CAS  PubMed  Google Scholar 

  55. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999;18:393–403.

    Article  CAS  PubMed  Google Scholar 

  56. Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging. 2013;32:237–46.

    Article  PubMed  Google Scholar 

  57. Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K. MR-based field-of-view extension in MR/PET: B(0) homogenization using gradient enhancement (HUGE). Magn Reson Med. 2012;70:1047–57.

    Article  PubMed  Google Scholar 

  58. Blumhagen JO, Braun H, Ladebeck R, Fenchel M, Faul D, Scheffler K, Quick HH. Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging. Med Phys. 2014;41:022303.

    Article  PubMed  Google Scholar 

  59. Tsoumpas C, Mackewn JE, Halsted P, King AP, Buerger C, Totman JJ, Schaeffter T, Marsden PK. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET. Ann Nucl Med. 2010;24:745–50.

    Article  PubMed  Google Scholar 

  60. Tsoumpas C, Buerger C, King AP, Mollet P, Keereman V, Vandenberghe S, Schulz V, Schleyer P, Schaeffter T, Marsden PK. Fast generation of 4D PET-MR data from real dynamic MR acquisitions. Phys Med Biol. 2011;56:6597–613.

    Article  CAS  PubMed  Google Scholar 

  61. Wuerslin C, Schmidt H, Martirosian P, Brendle C, Boss A, Schwenzer NF, Stegger L. Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med. 2013;54:464–71.

    Article  CAS  Google Scholar 

  62. Grimm R, Fürst S, Souvatzoglou M, Forman C, Hutter J, Dregely I, Ziegler SI, Kiefer B, Hornegger J, Block KT, Nekolla SG. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal. 2015;19:110–20.

    Article  PubMed  Google Scholar 

  63. Baumgartner CF, Kolbitsch C, Balfour DR, Marsden PK, McClelland JR, Rueckert D, King AP. High-resolution dynamic MR imaging of the thorax for respiratory motion correction of PET using groupwise manifold alignment. Med Image Anal. 2014;18:939–52.

    Article  PubMed  Google Scholar 

  64. Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015;45:212–23. Review

    Article  PubMed  PubMed Central  Google Scholar 

  65. Manber R, Thielemans K, Hutton BF, Barnes A, Ourselin S, Arridge S, O'Meara C, Wan S, Atkinson D. Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med. 2015;56:890–6.

    Article  PubMed  Google Scholar 

  66. Fürst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, Nekolla SG, Ziegler SI. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56:261–9.

    Article  PubMed  Google Scholar 

  67. Fayad H, Schmidt H, Wuerslin C, Visvikis D. Reconstruction-incorporated respiratory motion correction in clinical simultaneous PET/MR imaging for oncology applications. J Nucl Med. 2015;56:884–9.

    Article  PubMed  Google Scholar 

  68. Fieseler M, Kugel H, Gigengack F, Kösters T, Büther F, Quick HH, Faberd C, Jiang X, Schäfers KP. A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in PET/MRI: a preliminary evaluation. Nuc Instr Meth Physics Res A. 2013;702:59–63.

    Article  CAS  Google Scholar 

  69. Ai H, Pan T. Feasibility of using respiration-averaged MR images for attenuation correction of cardiac PET/MR imaging. J Appl Clin Med Phys. 2015;16:5194.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald H. Quick.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the topical collection on PET/MR Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quick, H.H. Systems, Physics, and Instrumentation of PET/MRI for Cardiovascular Studies. Curr Cardiovasc Imaging Rep 10, 17 (2017). https://doi.org/10.1007/s12410-017-9414-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9414-4

Keywords

Navigation