Skip to main content
Log in

Role of CT Imaging for Coronary and Non-coronary Interventions

  • Spotlight on CT Imaging (T Schindler, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pre-procedural imaging is essential for successful planning and performance of several cardiac interventions. Cardiac computed tomography (CT) is a non-invasive imaging modality capable of providing precise information required for different coronary and non-coronary interventions. The role of cardiac CT for the guidance of different cardiac interventions will be described in this review.

Recent Findings

Contrast-enhanced computed tomography imaging is increasingly being used for guiding transcatheter cardiac interventions. Anatomical and functional information provided by CT helps in successful planning and performance of several cardiac interventions.

Summary

Over the last decade, the continuous growth of interventional cardiology has been associated with widespread acknowledgment that CT is particularly useful for pre-interventional imaging with increasing implementation in clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Achenbach S, Marwan M, Ropers D, Schepis T, Pflederer T, Anders K, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31(3):340–6.

    Article  PubMed  Google Scholar 

  2. Bittner DO, Arnold M, Klinghammer L, Schuhbaeck A, Hell MM, Muschiol G, et al. Contrast volume reduction using third generation dual source computed tomography for the evaluation of patients prior to transcatheter aortic valve implantation. European radiology. 2016.

  3. Hell MM, Bittner D, Schuhbaeck A, Muschiol G, Brand M, Lell M, et al. Prospectively ECG-triggered high-pitch coronary angiography with third-generation dual-source CT at 70 kVp tube voltage: feasibility, image quality, radiation dose, and effect of iterative reconstruction. Journal of cardiovascular computed tomography. 2014;8(6):418–25.

    Article  PubMed  Google Scholar 

  4. • Wuest W, Anders K, Schuhbaeck A, May MS, Gauss S, Marwan M, et al. Dual source multidetector CT-angiography before transcatheter aortic valve implantation (TAVI) using a high-pitch spiral acquisition mode. Eur Radiol. 2012;22(1):51–8. Use of modern CT systems for TAVI acquisitions.

    Article  CAS  PubMed  Google Scholar 

  5. Pflederer T, Ludwig J, Ropers D, Daniel WG, Achenbach S. Measurement of coronary artery bifurcation angles by multidetector computed tomography. Investig Radiol. 2006;41(11):793–8.

    Article  Google Scholar 

  6. Papadopoulou SL, Girasis C, Gijsen FJ, Rossi A, Ottema J, van der Giessen AG, et al. A CT-based Medina classification in coronary bifurcations: does the lumen assessment provide sufficient information? Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions. 2014;84(3):445–52.

    Article  Google Scholar 

  7. Miura K, Kato M, Dote K, Kagawa E, Nakano Y, Oda N, et al. Association of nonculprit plaque characteristics with transient slow flow phenomenon during percutaneous coronary intervention. Int J Cardiol. 2015;181:108–13.

    Article  PubMed  Google Scholar 

  8. Uetani T, Amano T, Kunimura A, Kumagai S, Ando H, Yokoi K, et al. The association between plaque characterization by CT angiography and post-procedural myocardial infarction in patients with elective stent implantation. JACC Cardiovascular imaging. 2010;3(1):19–28.

    Article  PubMed  Google Scholar 

  9. Keh YS, Yap J, Yeo KK, Koh TH, Eeckhout E. Clinical outcomes of bioresorbable scaffold in coronary artery disease: a systematic literature review. J Interv Cardiol. 2016;29(1):57–69.

    Article  PubMed  Google Scholar 

  10. Cho JR, Kim YJ, Ahn CM, Moon JY, Kim JS, Kim HS, et al. Quantification of regional calcium burden in chronic total occlusion by 64-slice multi-detector computed tomography and procedural outcomes of percutaneous coronary intervention. Int J Cardiol. 2010;145(1):9–14.

    Article  PubMed  Google Scholar 

  11. Ehara M, Terashima M, Kawai M, Matsushita S, Tsuchikane E, Kinoshita Y, et al. Impact of multislice computed tomography to estimate difficulty in wire crossing in percutaneous coronary intervention for chronic total occlusion. The Journal of Invasive Cardiology. 2009;21(11):575–82.

    PubMed  Google Scholar 

  12. Hsu JT, Kyo E, Chu CM, Tsuji T, Watanabe S. Impact of calcification length ratio on the intervention for chronic total occlusions. Int J Cardiol. 2011;150(2):135–41.

    Article  PubMed  Google Scholar 

  13. Mollet NR, Hoye A, Lemos PA, Cademartiri F, Sianos G, McFadden EP, et al. Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol. 2005;95(2):240–3.

    Article  PubMed  Google Scholar 

  14. Soon KH, Cox N, Wong A, Chaitowitz I, Macgregor L, Santos PT, et al. CT coronary angiography predicts the outcome of percutaneous coronary intervention of chronic total occlusion. J Interv Cardiol. 2007;20(5):359–66.

    Article  PubMed  Google Scholar 

  15. • Opolski MP, Achenbach S, Schuhback A, Rolf A, Mollmann H, Nef H, et al. Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion: insights from the CT-RECTOR multicenter registry (Computed Tomography Registry of Chronic Total Occlusion Revascularization). JACC Cardiovascular interventions. 2015;8(2):257–67. Proposed CT score for assessment of procedural success.

    Article  PubMed  Google Scholar 

  16. Sugaya T, Oyama-Manabe N, Yamaguchi T, Tamaki N, Ishimaru S, Okabayashi H, et al. Visualization of collateral channels with coronary computed tomography angiography for the retrograde approach in percutaneous coronary intervention for chronic total occlusion. Journal of cardiovascular computed tomography. 2016;10(2):128–34.

    Article  PubMed  Google Scholar 

  17. • Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). Journal of cardiovascular computed tomography. 2012;6(6):366–80. Guidelines for the use of CT prior to TAVI procedure.

    Article  PubMed  Google Scholar 

  18. Marwan M, Achenbach S. Role of cardiac CT before transcatheter aortic valve implantation (TAVI). Current cardiology reports. 2016;18(2):21.

    Article  PubMed  Google Scholar 

  19. Arnold M, Achenbach S, Pfeiffer I, Ensminger S, Marwan M, Einhaus F, et al. A method to determine suitable fluoroscopic projections for transcatheter aortic valve implantation by computed tomography. Journal of cardiovascular computed tomography. 2012;6(6):422–8.

    Article  PubMed  Google Scholar 

  20. Blanke P, Dvir D, Cheung A, Levine RA, Thompson C, Webb JG, et al. Mitral annular evaluation with CT in the context of transcatheter mitral valve replacement. JACC Cardiovascular imaging. 2015a;8(5):612–5.

    Article  PubMed  Google Scholar 

  21. Blanke P, Dvir D, Cheung A, Ye J, Levine RA, Precious B, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. Journal of cardiovascular computed tomography. 2014;8(6):459–67.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blanke P, Naoum C, Dvir D, Bapat V, Ong K, Muller D, et al. Predicting LVOT obstruction in transcatheter mitral valve implantation: concept of the neo-LVOT. JACC Cardiovascular imaging. 2016.

  23. • Blanke P, Naoum C, Webb J, Dvir D, Hahn RT, Grayburn P, et al. Multimodality imaging in the context of transcatheter mitral valve replacement: establishing consensus among modalities and disciplines. JACC Cardiovascular imaging. 2015b;8(10):1191–208. Depicts the complexity of the Mitral valve complex in CT imaging.

    Article  PubMed  Google Scholar 

  24. Rihal CS, Sorajja P, Booker JD, Hagler DJ, Cabalka AK. Principles of percutaneous paravalvular leak closure. JACC Cardiovascular interventions. 2012;5(2):121–30.

    Article  PubMed  Google Scholar 

  25. Ruiz CE, Jelnin V, Kronzon I, Dudiy Y, Del Valle-Fernandez R, Einhorn BN, et al. Clinical outcomes in patients undergoing percutaneous closure of periprosthetic paravalvular leaks. J Am Coll Cardiol. 2011;58(21):2210–7.

    Article  PubMed  Google Scholar 

  26. Lesser JR, Han BK, Newell M, Schwartz RS, Pedersen W, Sorajja P. Use of cardiac CT angiography to assist in the diagnosis and treatment of aortic prosthetic paravalvular leak: a practical guide. Journal of cardiovascular computed tomography. 2015;9(3):159–64.

    Article  PubMed  Google Scholar 

  27. Holmes DR, Reddy VY, Turi ZG, Doshi SK, Sievert H, Buchbinder M, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009;374(9689):534–42.

    Article  CAS  PubMed  Google Scholar 

  28. Donal E, Lip GY, Galderisi M, Goette A, Shah D, Marwan M, et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. European heart journal cardiovascular Imaging. 2016;17(4):355–83.

    Article  PubMed  Google Scholar 

  29. Lopez-Minguez JR, Gonzalez-Fernandez R, Fernandez-Vegas C, Millan-Nunez V, Fuentes-Canamero ME, Nogales-Asensio JM, et al. Anatomical classification of left atrial appendages in specimens applicable to CT imaging techniques for implantation of amplatzer cardiac plug. J Cardiovasc Electrophysiol. 2014;25(9):976–84.

    Article  PubMed  Google Scholar 

  30. Jongbloed MR, Bax JJ, Lamb HJ, Dirksen MS, Zeppenfeld K, van der Wall EE, et al. Multislice computed tomography versus intracardiac echocardiography to evaluate the pulmonary veins before radiofrequency catheter ablation of atrial fibrillation: a head-to-head comparison. J Am Coll Cardiol. 2005;45(3):343–50.

    Article  PubMed  Google Scholar 

  31. Niinuma H, George RT, Arbab-Zadeh A, Lima JA, Henrikson CA. Imaging of pulmonary veins during catheter ablation for atrial fibrillation: the role of multi-slice computed tomography. Europace: European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2008;10(Suppl 3):iii14–21.

    Google Scholar 

  32. Schwartzman D, Lacomis J, Wigginton WG. Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol. 2003;41(8):1349–57.

    Article  PubMed  Google Scholar 

  33. Wood MA, Wittkamp M, Henry D, Martin R, Nixon JV, Shepard RK, et al. A comparison of pulmonary vein ostial anatomy by computerized tomography, echocardiography, and venography in patients with atrial fibrillation having radiofrequency catheter ablation. Am J Cardiol. 2004;93(1):49–53.

    Article  PubMed  Google Scholar 

  34. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circulation Cardiovascular imaging. 2013;6(2):185–94.

    Article  PubMed  Google Scholar 

  35. Qureshi AM, Prieto LR, Latson LA, Lane GK, Mesia CI, Radvansky P, et al. Transcatheter angioplasty for acquired pulmonary vein stenosis after radiofrequency ablation. Circulation. 2003;108(11):1336–42.

    Article  PubMed  Google Scholar 

  36. Saad EB, Marrouche NF, Saad CP, Ha E, Bash D, White RD, et al. Pulmonary vein stenosis after catheter ablation of atrial fibrillation: emergence of a new clinical syndrome. Ann Intern Med. 2003a;138(8):634–8.

    Article  PubMed  Google Scholar 

  37. Saad EB, Rossillo A, Saad CP, Martin DO, Bhargava M, Erciyes D, et al. Pulmonary vein stenosis after radiofrequency ablation of atrial fibrillation: functional characterization, evolution, and influence of the ablation strategy. Circulation. 2003b;108(25):3102–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Marwan.

Ethics declarations

Conflict of Interest

Stephan Achenbach declares that he has no conflict of interest.

Mohamed Marwan reports personal fees from Siemens Healthineers and Edwards Lifesciences, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Spotlight on CT Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marwan, M., Achenbach, S. Role of CT Imaging for Coronary and Non-coronary Interventions. Curr Cardiovasc Imaging Rep 10, 12 (2017). https://doi.org/10.1007/s12410-017-9410-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9410-8

Keywords

Navigation