Skip to main content
Log in

Insights from CTA with Comparison to Modalities of Intravascular Ultrasound Imaging

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Noninvasive imaging of atherosclerosis by cardiac CT continues to rapidly evolve. A large collection of data has emerged on detection and quantification of coronary plaque in vivo with cardiac CT with comparison to the gold standard of clinical plaque assessment, intravascular ultrasound. Given inherent spatial limitations, although the correlation is significant, the variability and limits of agreement of these measurements are wide. More recently, focus has shifted to detecting plaque stability, or rather high-risk features of plaque, and identifying those “vulnerable” to rupture. This is a concept originated in histopathology and translated clinically into invasive plaque characterization through virtual histology, or IVUS-VH. We will review the literature regarding methods of plaque assessment, as well as plaque progression and outcomes data, in cardiac CT with regard to its correlation with IVUS and IVUS-VH. The potential in cardiac CT lies within the noninvasive detection of coronary artery disease, its ability to help distinguish those plaques and thus, those patients most vulnerable, which ultimately may be utilized for risk stratification, direction of aggressive therapy, and even as a way to evaluate effects of medical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, publish recently, have been highlighted as: • Of importance •• Of major importance

  1. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–e215.

    Article  PubMed  Google Scholar 

  2. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  PubMed  CAS  Google Scholar 

  3. Virmaini R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphologic classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  Google Scholar 

  4. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  5. Rinehart S, Vazquez G, Qian Z, Voros S. Coronary plaque imaging with multi-slice computed tomographic angiography and intravascular ultrasound: A close look inside and out. J Invasive Cardiol. 2009;21(7):367–72.

    PubMed  Google Scholar 

  6. Gotsman MS, Mosseri M, Rozenman Y, et al. Atherosclerosis studies by intracoronary ultrasound. Adv Exp Med Biol. 1997;430:197–212.

    PubMed  CAS  Google Scholar 

  7. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47(12):2405–12.

    Article  PubMed  Google Scholar 

  8. Nair A, Margolis MP, Kuban BD, et al. Automated coronary plaque characterization with intravascular ultrasound backscatter: Ex vivo validation. EuroInterv. 2007;3:113–20.

    Google Scholar 

  9. Rodriguez-Granillo GA, García-García HM, McFadden EP, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005;46:2038–42.

    Article  PubMed  Google Scholar 

  10. Horiguchi J, Yamamoto H, Hirai N, Akiyama Y, Fujioka C, Marukawa K, et al. Variability of repeated coronary artery calcium measurements on low-dose ECG-gated 16-MDCT. AJR Am J Roentgenol. 2006;187(1):W1–6.

    Article  PubMed  Google Scholar 

  11. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860–70.

    Article  PubMed  Google Scholar 

  12. Budoff MJ, Gul KM. Expert review on coronary calcium. Vasc Health Risk Manag. 2008;4:315–24.

    PubMed  Google Scholar 

  13. Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: Systematic review and meta-analysis. Heart. 2008;94(11):1386–93.

    Article  PubMed  CAS  Google Scholar 

  14. Nair D, Carrigan TP, Curtin RJ, et al. Association of coronary atherosclerosis detected by multislice computed tomography and traditional risk-factor assessment. Am J Cardiol. 2008;102:316–20.

    Article  PubMed  Google Scholar 

  15. van Werkhoven JM, Schuijf JD, Gaemperli O, et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol. 2009;53(7):623–32.

    Article  PubMed  Google Scholar 

  16. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50:1161–70.

    Article  PubMed  Google Scholar 

  17. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol. 2001;37:1430–5.

    Article  PubMed  CAS  Google Scholar 

  18. Leber AW, Knez A, Becker A, Becker C, von Ziegler F, Nikolaou K, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: A comparative study with intracoronary ultra-sound. J Am Coll Cardiol. 2004;43:1241–7.

    Article  PubMed  Google Scholar 

  19. Leber AW, Becker A, Knez A. von ZF, Sirol M, Nikolaou K, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: A comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47:672–7.

    Article  PubMed  Google Scholar 

  20. Sun J, Zhang Z, Lu B, Yu W, Yang Y, Zhou Y, et al. Identification and quantification of coronary atherosclerotic plaques: A comparison of 64-MDCT and intravascular ultrasound. AJR Am J Roentgenol. 2008;190:748–54.

    Article  PubMed  Google Scholar 

  21. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, sub-millimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109:14–7.

    Article  PubMed  Google Scholar 

  22. Pohle K, Achenbach S, Macneill B, Ropers D, Ferencik M, Moselewski F, et al. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190(1):174–80.

    Article  PubMed  CAS  Google Scholar 

  23. Motoyama S, Kondo T, Anno H, Sugiura A, Ito Y, Mori K, et al. Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J. 2007;71(3):363–6.

    Article  PubMed  Google Scholar 

  24. Petranovic M, Soni A, Bezzera H, et al. Assessment of nonstenotic coronary lesions by 64-slice multidetector computed tomography in comparison to intravascular ultrasound:evaluation of nonculprit coronary lesions. J Cardiovasc Comput Tomogr. 2009;3:24–31.

    Article  PubMed  Google Scholar 

  25. •• Pundziute G, Schuijf JD, Jukema JW, Decramer I, Sarno G, Reiber J, et al. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultra-sound radiofrequency data analysis. J Am Coll Cardiol Intv 2008;1:176–82. Plays an important role in establishing direct correlation between VH and MDCT.

    Google Scholar 

  26. Pundziute G, Schuijf JD, Jukema JW, Decramer I, Sarno G, Vanhoenacker PK, et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur Heart J. 2008;29(19):2373–81.

    Article  PubMed  Google Scholar 

  27. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–62.

    Article  PubMed  Google Scholar 

  28. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  29. Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T, et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging. 2009;2(2):153–60.

    Article  PubMed  Google Scholar 

  30. Pflederer T, Marwan M, Schepis T, Ropers D, Seltmann M, Muschiol G, et al. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis. 2010;211(2):437–44.

    Article  PubMed  CAS  Google Scholar 

  31. Maurovich-Horvat P, Ferencik M, Bamberg F, Hoffman U. Methods of plaque quantification and characterization by cardiac computed tomography. J Cardiovasc Comput Tomogr. 2009;3:S91–98.

    Article  PubMed  Google Scholar 

  32. • Voros S, Rinehart S, Qian Z, et al. Prospective Validation of Standardized, 3-Dimensional, Quantitative Coronary Computed Tomographic Plaque Measurements Using Radiofrequency Backscatter Intravascular Ultrasound as Reference Standard in Intermediate Coronary Arterial Lesions: Results From the ATLANTA (Assessment of Tissue Characteristics, Lesion Morphology, and Hemodynamics by Angiography With Fractional Flow Reserve, Intravascular Ultrasound and Virtual Histology, and Noninvasive Computed Tomography in Atherosclerotic Plaques) I Study. J Am Coll Cardiol Intv 2011 4: 198–208. This provides a very thorough review of the accuracy of MDCT plaque quantification.

    Google Scholar 

  33. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. ASTEROID Investigators. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–65.

    Article  PubMed  CAS  Google Scholar 

  34. Kubo T, Maehara A, Mintz G, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590–7.

    Article  PubMed  CAS  Google Scholar 

  35. Schmid M, Achenbach S, Ropers D, Komatsu S, Ropers U, Daniel WG, et al. Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol. 2008;101:579–84.

    Article  PubMed  Google Scholar 

  36. Hoffmann H, Frieler K, Schlattmann P, Hamm B, Dewey M. Influence of statin treatment on coronary atherosclerosis visualised using multidetector computed tomography. Eur Radiol. 2010;20(12):2824–33.

    Article  PubMed  Google Scholar 

  37. Lehman SJ, Schlett CL, Bamberg F, Lee H, Donnelly P, Shturman L, et al. Assessment of coronary plaque progression in coronary computed tomography angiography using a semiquantitative score. JACC Cardiovasc Imaging. 2009;2(11):1262–70.

    Article  PubMed  Google Scholar 

  38. •• Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW; PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011 Jan 20;364(3):226–35. This is the first prospective natural history demonstrating the clinical significance of VH analysis and the clinical utility of the vulnerable plaque concept in terms of outcomes data.

    Article  PubMed  CAS  Google Scholar 

  39. • Motoyama, S, Sarai, M, Harigaya, H, Anno, H, Inoue, K, Hara, T, Naruse, H, Ishii, J, Hishida, H, Wong, ND., Virmani, R, Kondo, T, Ozaki, Y, Narula, J. Computed Tomographic Angiography Characteristics of Atherosclerotic Plaques Subsequently Resulting in Acute Coronary Syndrome. J Am Coll Cardiol 2009 54: 49–57. This is a landmark prospective study looking at high-risk plaque features on cardiac CT and outcomes.

    Article  PubMed  Google Scholar 

Download references

Disclosure

B. Burke: none; M. J. Budoff: honoraria from GE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benita Burke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, B., Budoff, M.J. Insights from CTA with Comparison to Modalities of Intravascular Ultrasound Imaging. Curr Cardiovasc Imaging Rep 4, 309–316 (2011). https://doi.org/10.1007/s12410-011-9091-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-011-9091-7

Keywords

Navigation