Skip to main content

Advertisement

Log in

Intracoronary Ultrasound in Assessing Efficacy of Cardiovascular Drugs

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Despite substantial advances in our approach to prevent cardiovascular disease, there is an ongoing need to develop new therapeutic strategies to achieve more effective reduction in cardiovascular risk. Intravascular ultrasound imaging of the coronary arteries has been increasingly employed in clinical trials to evaluate the impact of medical therapies on the progression of atherosclerosis. In addition to the ability to assess whether novel agents can slow disease progression, these studies have provided a number of important insights into the factors that underlie the natural history of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lloyd-Jones D, Adams RJ, Brown TM, et al.: Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010, 121:e46–e215.

    Article  PubMed  Google Scholar 

  2. Libby P: Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001, 104:365–372.

    CAS  PubMed  Google Scholar 

  3. Mintz GS, Nissen SE, Anderson WD, et al.: American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001, 37:1478–1492.

    Article  CAS  PubMed  Google Scholar 

  4. Nissen SE, Gurley JC, Grines CL, et al.: Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991, 84:1087–1099.

    CAS  PubMed  Google Scholar 

  5. Glagov S, Weisenberg E, Zarins CK, et al.: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987, 316:1371–1375.

    CAS  PubMed  Google Scholar 

  6. Wiviott SD, Cannon CP: Update on lipid-lowering therapy and LDL-cholesterol targets. Nat Clin Pract Cardiovasc Med 2006, 3:424–436.

    Article  CAS  PubMed  Google Scholar 

  7. Baigent C, Keech A, Kearney PM, et al.: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366:1267–1278.

    Article  CAS  PubMed  Google Scholar 

  8. Buja LM, Kita T, Goldstein JL, et al.: Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia. Arteriosclerosis 1983, 3:87–101.

    CAS  PubMed  Google Scholar 

  9. Zhao S, Zhang C, Lin Y, et al.: The effects of rosiglitazone on aortic atherosclerosis of cholesterol-fed rabbits. Thromb Res 2008, 123:281–287.

    Article  CAS  PubMed  Google Scholar 

  10. Goldstein JL, Ho YK, Basu SK, et al.: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979, 76:333–337.

    Article  CAS  PubMed  Google Scholar 

  11. Steinberg D, Parthasarathy S, Carew TE, et al.: Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989, 320:915–924.

    CAS  PubMed  Google Scholar 

  12. Ballantyne CM: Clinical trial endpoints: angiograms, events, and plaque instability. Am J Cardiol 1998, 82:5M–11M.

    Article  CAS  PubMed  Google Scholar 

  13. Taylor AJ, Kent SM, Flaherty PJ, et al.: ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 2002, 106:2055–2060.

    Article  CAS  PubMed  Google Scholar 

  14. Fleg JL, Mete M, Howard BV, et al.: Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J Am Coll Cardiol 2008, 52:2198–2205.

    Article  CAS  PubMed  Google Scholar 

  15. Schartl M, Bocksch W, Koschyk DH, et al.: Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation 2001, 104:387–392.

    Article  CAS  PubMed  Google Scholar 

  16. Nissen SE, Tuzcu EM, Schoenhagen P, et al.: Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004, 291:1071–1080.

    Article  CAS  PubMed  Google Scholar 

  17. Nissen SE, Tuzcu EM, Schoenhagen P, et al.: Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005, 352:29–38.

    Article  CAS  PubMed  Google Scholar 

  18. Nissen SE, Nicholls SJ, Sipahi I, et al.: Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006, 295:1556–1565.

    Article  CAS  PubMed  Google Scholar 

  19. Okazaki S, Yokoyama T, Miyauchi K, et al.: Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation 2004, 110:1061–1068.

    Article  CAS  PubMed  Google Scholar 

  20. Jensen LO, Thayssen P, Pedersen KE, et al.: Regression of coronary atherosclerosis by simvastatin: a serial intravascular ultrasound study. Circulation 2004, 110:265–270.

    Article  CAS  PubMed  Google Scholar 

  21. Gordon DJ, Probstfield JL, Garrison RJ, et al.: High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79:8–15.

    CAS  PubMed  Google Scholar 

  22. Barter P, Gotto AM, LaRosa JC, et al.: HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med 2007, 357:1301–1310.

    Article  CAS  PubMed  Google Scholar 

  23. Nicholls SJ, Cutri B, Worthley SG, et al.: Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 2005, 25:2416-2421.

    Article  CAS  PubMed  Google Scholar 

  24. Rong JX, Li J, Reis ED, et al.: Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 2001, 104:2447–2452.

    Article  CAS  PubMed  Google Scholar 

  25. Shah PK, Yano J, Reyes O, et al.: High-dose recombinant apolipoprotein A-I(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization. Circulation 2001, 103:3047–3050.

    Article  CAS  PubMed  Google Scholar 

  26. Barter PJ, Nicholls S, Rye KA, et al.: Antiinflammatory properties of HDL. Circ Res 2004, 95:764–772.

    Article  CAS  PubMed  Google Scholar 

  27. • Nicholls SJ, Tuzcu EM, Sipahi I, et al.: Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 2007, 297:499–508. This is the first demonstration of the impact of HDL cholesterol elevation with statins on progression of coronary atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  28. Nicholls SJ, Tuzcu EM, Sipahi I, et al.: Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano. J Am Coll Cardiol 2006, 47:992–997.

    Article  CAS  PubMed  Google Scholar 

  29. Nissen SE, Tsunoda T, Tuzcu EM, et al.: Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003, 290:2292–2300.

    Article  CAS  PubMed  Google Scholar 

  30. Tardif JC, Gregoire J, L’Allier PL, et al.: Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 2007, 297:1675–1682.

    Article  PubMed  Google Scholar 

  31. Sacks FM, Rudel LL, Conner A, et al.: Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res 2009, 50:894–907.

    Article  CAS  PubMed  Google Scholar 

  32. Barter P: CETP and atherosclerosis. Arterioscler Thromb Vasc Biol 2000, 20:2029–2031.

    CAS  PubMed  Google Scholar 

  33. Rittershaus CW, Miller DP, Thomas LJ, et al.: Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 2000, 20:2106–2112.

    CAS  PubMed  Google Scholar 

  34. Barter PJ, Caulfield M, Eriksson M, et al.: Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007, 357:2109–2122.

    Article  CAS  PubMed  Google Scholar 

  35. Nissen SE, Tardif JC, Nicholls SJ, et al.: Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007, 356:1304–1316.

    Article  CAS  PubMed  Google Scholar 

  36. Bots ML, Visseren FL, Evans GW, et al.: Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 2007, 370:153–160.

    Article  CAS  PubMed  Google Scholar 

  37. Kastelein JJ, van Leuven SI, Burgess L, et al.: Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med 2007, 356:1620–1630.

    Article  CAS  PubMed  Google Scholar 

  38. • Nicholls SJ, Tuzcu EM, Brennan DM, et al.: Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 2008, 118:2506–2514. Regression at highest levels of HDL cholesterol with torcetrapib suggests HDL functionality.

    Article  CAS  PubMed  Google Scholar 

  39. Sofat R, Hingorani AD, Smeeth L, et al.: Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation 2010, 121:52–62.

    Article  CAS  PubMed  Google Scholar 

  40. Lewington S, Clarke R, Qizilbash N, et al.: Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360:1903–1913.

    Article  PubMed  Google Scholar 

  41. Nissen SE, Tuzcu EM, Libby P, et al.: Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 2004, 292:2217–2225.

    Article  CAS  PubMed  Google Scholar 

  42. Sipahi I, Tuzcu EM, Schoenhagen P, et al.: Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol 2006, 48:833–838.

    Article  PubMed  Google Scholar 

  43. Chhatriwalla AK, Nicholls SJ, Wang TH, et al.: Low levels of low-density lipoprotein cholesterol and blood pressure and progression of coronary atherosclerosis. J Am Coll Cardiol 2009, 53:1110–1115.

    Article  CAS  PubMed  Google Scholar 

  44. Nicholls SJ, Tuzcu EM, Kalidindi S, et al.: Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol 2008, 52:255–262.

    Article  CAS  PubMed  Google Scholar 

  45. • Nissen SE, Nicholls SJ, Wolski K, et al.: Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008, 299:1561–1573. This is the first report of halting progression of coronary atherosclerosis in patients with diabetes.

    Article  CAS  PubMed  Google Scholar 

  46. Davidson M, Meyer PM, Haffner S, et al.: Increased high-density lipoprotein cholesterol predicts the pioglitazone-mediated reduction of carotid intima-media thickness progression in patients with type 2 diabetes mellitus. Circulation 2008, 117:2123–2130.

    Article  CAS  PubMed  Google Scholar 

  47. Gerstein HC, Ratner RE, Cannon CP, et al.: Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation 2010, 121:1176–1187.

    Article  CAS  PubMed  Google Scholar 

  48. Bocan TM, Krause BR, Rosebury WS, et al.: The ACAT inhibitor avasimibe reduces macrophages and matrix metalloproteinase expression in atherosclerotic lesions of hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 2000, 20:70–79.

    CAS  PubMed  Google Scholar 

  49. Bocan TM, Krause BR, Rosebury WS, et al.: The combined effect of inhibiting both ACAT and HMG-CoA reductase may directly induce atherosclerotic lesion regression. Atherosclerosis 2001, 157:97–105.

    Article  CAS  PubMed  Google Scholar 

  50. Tardif JC, Gregoire J, L’Allier PL, et al.: Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 2004, 110:3372–3377.

    Article  CAS  PubMed  Google Scholar 

  51. Nissen SE, Tuzcu EM, Brewer HB, et al.: Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2006, 354:1253–1263.

    Article  CAS  PubMed  Google Scholar 

  52. Meuwese MC, de Groot E, Duivenvoorden R, et al.: ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA 2009, 301:1131–1139.

    Article  CAS  PubMed  Google Scholar 

  53. Scheen AJ, Finer N, Hollander P, et al.: Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 2006, 368:1660–1672.

    Article  CAS  PubMed  Google Scholar 

  54. Despres JP, Golay A, Sjostrom L: Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005, 353:2121–2134.

    Article  CAS  PubMed  Google Scholar 

  55. Nissen SE, Nicholls SJ, Wolski K, et al.: Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 2008, 299:1547–1560.

    Article  CAS  PubMed  Google Scholar 

  56. Nair A, Kuban BD, Tuzcu EM, et al.: Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002, 106:2200–2206.

    Article  PubMed  Google Scholar 

  57. Kawasaki M, Sano K, Okubo M, et al.: Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol 2005, 45:1946–1953.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Dr. Nicholls reports receiving honoraria from Pfizer, AstraZeneca, Takeda, and Merck Schering-Plough, consultancy fees from AstraZeneca, Pfizer, Roche, Novo-Nordisk, Merck Schering-Plough, Liposcience, and Anthera Pharmaceuticals, and research support from AstraZeneca, Lipid Sciences, Novartis, and Resverlogix. Dr. Tuzcu reports receiving consultancy fees from Pfizer and honoraria from Pfizer and Merck. Dr. Nissen has received research support from AstraZeneca, Eli Lilly, Pfizer, Takeda, Sankyo, and Sanofi-Aventis. He has consulted for a number of pharmaceutical companies without financial compensation. All honoraria, consulting fees, or any other payments from any for-profit entity are paid directly to charity, so that neither income nor any tax deduction is received. Dr Uno reports no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Nicholls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholls, S.J., Uno, K., Tuzcu, E.M. et al. Intracoronary Ultrasound in Assessing Efficacy of Cardiovascular Drugs. curr cardiovasc imaging rep 3, 190–196 (2010). https://doi.org/10.1007/s12410-010-9027-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-010-9027-7

Keywords

Navigation