Skip to main content
Log in

Noninvasive methods for monitoring cardiac stem cell therapy

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Myocardial infarction remains a major cause of death despite the continuous improvements in standard invasive and pharmacologic therapy. Cardiac regeneration by use of stem cells or progenitor cells has been proposed, and it has been carried into clinical trials based on initial success in experimental studies. However, recently reported results were inconsistent, and the clinical efficacy is still debated. Strategies to optimize cell delivery and engraftment are highly relevant for the future success of this therapeutic approach. Noninvasive imaging may play a key role in this optimization process. It has been used to monitor the efficacy of therapy through recovery of perfusion, metabolism, and functional parameters as essential surrogate end points of clinical outcome. Additionally, novel techniques for visualization and tracking of transplanted cells after therapeutic administration have been introduced. Ultimately, it is anticipated that existing and novel noninvasive imaging approaches will provide further insights into biology of cells, disease, and therapeutic mechanisms, and may thereby help to expedite the success of cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kehat I, Kenyagin-Karsenti D, Snir M, et al.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001, 108:407–414.

    PubMed  CAS  Google Scholar 

  2. Meyer GP, Wollert KC, Lotz J, et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration) trial. Circulation 2006, 113:1287–1294.

    Article  PubMed  Google Scholar 

  3. Janssens S, Dubois C, Bogaert J, et al.: Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006, 367:113–121.

    Article  PubMed  Google Scholar 

  4. Lunde K, Solheim S, Aakhus S, et al.: Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006, 355:1199–1209.

    Article  PubMed  CAS  Google Scholar 

  5. Schachinger V, Erbs S, Elsasser A, et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006, 355:1210–1221.

    Article  PubMed  CAS  Google Scholar 

  6. Segers VF, Lee RT: Stem-cell therapy for cardiac disease. Nature 2008, 451:937–942.

    Article  PubMed  CAS  Google Scholar 

  7. Strauer BE, Brehm M, Zeus T, et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002, 106:1913–1918.

    Article  PubMed  Google Scholar 

  8. Chen SL, Fang WW, Ye F, et al.: Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004, 94:92–95.

    Article  PubMed  Google Scholar 

  9. Kang HJ, Kim HS, Zhang SY, et al.: Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004, 363:751–756.

    Article  PubMed  CAS  Google Scholar 

  10. Perin EC, Dohmann HF, Borojevic R, et al.: Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004, 110(Suppl 1):II213–II218.

    Google Scholar 

  11. Bartunek J, Vanderheyden M, Vandekerckhove B, et al.: Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005, 112(Suppl):I178–I183.

    Google Scholar 

  12. Dib N, Michler RE, Pagani FD, et al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 2005, 112:1748–1755.

    Article  PubMed  Google Scholar 

  13. Erbs S, Linke A, Adams V, et al.: Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 2005, 97:756–762.

    Article  PubMed  CAS  Google Scholar 

  14. Katritsis DG, Sotiropoulou PA, Karvouni E, et al.: Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005, 65:321–329.

    Article  PubMed  Google Scholar 

  15. Patel AN, Geffner L, Vina RF, et al.: Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg 2005, 130:1631–1638.

    Article  PubMed  Google Scholar 

  16. Strauer BE, Brehm M, Zeus T, et al.: Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005, 46:1651–1658.

    Article  PubMed  Google Scholar 

  17. Chen S, Liu Z, Tian N, et al.: Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 2006, 18:552–556.

    PubMed  Google Scholar 

  18. Gavira JJ, Herreros J, Perez A, et al.: Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg 2006, 131:799–804.

    Article  PubMed  Google Scholar 

  19. Ge J, Li Y, Qian J, et al.: Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 2006, 92:1764–1767.

    Article  PubMed  CAS  Google Scholar 

  20. Hendrikx M, Hensen K, Clijsters C, et al.: Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 2006, 114(Suppl):I101–I107.

    Google Scholar 

  21. Meluzin J, Mayer J, Groch L, et al.: Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 2006, 152:975.e9–975.e15.

    Article  Google Scholar 

  22. Stamm C, Kleine HD, Choi YH, et al.: Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 2007, 133:717–725.

    Article  PubMed  Google Scholar 

  23. Tatsumi T, Ashihara E, Yasui T, et al.: Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ J 2007, 71:1199–1207.

    Article  PubMed  Google Scholar 

  24. Chachques JC, Trainini JC, Lago N, et al.: Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 2008, 85:901–908.

    Article  PubMed  Google Scholar 

  25. Meluzin J, Janousek S, Mayer J, et al.: Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 2008, 128:185–192.

    Article  PubMed  Google Scholar 

  26. Yao K, Huang R, Qian J, et al.: Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart 2008, 94:1147–1153.

    Article  PubMed  CAS  Google Scholar 

  27. Kapur A, Latus KA, Davies G, et al.: A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur J Nucl Med Mol Imaging 2002, 29:1608–1616.

    Article  PubMed  CAS  Google Scholar 

  28. Nakajima K, Higuchi T, Taki J, et al.: Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: comparison of 4 software programs. J Nucl Med 2001, 42:1571–1578.

    PubMed  CAS  Google Scholar 

  29. Germano G, Kiat H, Kavanagh PB, et al.: Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995, 36:2138–2147.

    PubMed  CAS  Google Scholar 

  30. Bateman TM, Heller GV, McGhie AI, et al.: Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006, 13:24–33.

    Article  PubMed  Google Scholar 

  31. Yu M, Guaraldi MT, Mistry M, et al.: BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007, 14:789–798.

    Article  PubMed  CAS  Google Scholar 

  32. Yalamanchili P, Wexler E, Hayes M, et al.: Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol 2007, 14:782–788.

    Article  PubMed  Google Scholar 

  33. Madar I, Ravert HT, Du Y, et al.: Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 2006, 47:1359–1366.

    PubMed  CAS  Google Scholar 

  34. Higuchi T, Nekolla SG, Huisman MM, et al.: A new 18F-labeled myocardial PET tracer: myocardial uptake after permanent and transient coronary occlusion in rats. J Nucl Med 2008, 49:1715–1722.

    Article  PubMed  Google Scholar 

  35. Madar I, Ravert H, Dipaula A, et al.: Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med 2007, 48:1021–1030.

    Article  PubMed  CAS  Google Scholar 

  36. Bax JJ, Valkema R, Visser FC, et al.: FDG SPECT in the assessment of myocardial viability. Comparison with dobutamine echo. Eur Heart J 1997, 18(Suppl D):D124–D129.

    Google Scholar 

  37. Higuchi T, Schwaiger M: Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep 2006, 8:131–138.

    Article  PubMed  Google Scholar 

  38. Higuchi T, Schwaiger M: Noninvasive imaging of heart failure: neuronal dysfunction and risk stratification. Heart Fail Clin 2006, 2:193–204.

    Article  PubMed  Google Scholar 

  39. Higuchi T, Bengel FM, Seidl S, et al.: Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 2008, 78:395–403.

    Article  PubMed  CAS  Google Scholar 

  40. Meoli DF, Sadeghi MM, Krassilnikova S, et al.: Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 2004, 113:1684–1691.

    PubMed  CAS  Google Scholar 

  41. Beer AJ, Haubner R, Sarbia M, et al.: Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 2006, 12:3942–3949.

    Article  PubMed  CAS  Google Scholar 

  42. Tran N, Poussier S, Franken PR, et al.: Feasibility of in vivo dual-energy myocardial SPECT for monitoring the distribution of transplanted cells in relation to the infarction site. Eur J Nucl Med Mol Imaging 2006, 33:709–715.

    Article  PubMed  Google Scholar 

  43. Aicher A, Brenner W, Zuhayra M, et al.: Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003, 107:2134–2139.

    Article  PubMed  Google Scholar 

  44. Brenner W, Aicher A, Eckey T, et al.: 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 2004, 45:512–518.

    PubMed  CAS  Google Scholar 

  45. Kraitchman DL, Tatsumi M, Gilson WD, et al.: Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005, 112:1451–1461.

    Article  PubMed  Google Scholar 

  46. Wu JC, Chen IY, Sundaresan G, et al.: Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003, 108:1302–1305.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Bengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, T., Fukushima, K. & Bengel, F.M. Noninvasive methods for monitoring cardiac stem cell therapy. curr cardiovasc imaging rep 2, 205–212 (2009). https://doi.org/10.1007/s12410-009-0025-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-0025-6

Keywords

Navigation