Skip to main content
Log in

Geochemistry of Trace Metals and Rare Earth Elements in Stream Water, Stream Sediments and Acid Mine Drainage from Darrehzar Copper Mine, Kerman, Iran

  • Original Paper
  • Published:
Water Quality, Exposure and Health Aims and scope Submit manuscript

Abstract

Darrehzar porphyry copper mine is located 10 km south of the famous Sarcheshmeh porphyry copper mine in Kerman province, Iran. Water and sediment samples in the Darrehzar porphyry copper mine were collected and analyzed in order to characterize the environmental effects of regional geology and mining activity. Stream affected by acid mine drainage (AMD) are \({\hbox {Ca}}{-}{\hbox {SO}}_{4}^{2-}\) in type, while unaffected streams are \({\hbox {Ca}}{-}{\hbox {HCO}}_{3}^{- }\) type. Acid drainage, with pH values as low as 2.5, is quite rich in dissolved copper (mean 306.53 mg/L) \(>\) iron (77.83 mg/L) \(>\) aluminium (48.62 mg/L) \(>\) manganese (6.90 mg/L) \(>\) zinc (2810.42 \(\upmu \)g/L) \(>\) cobalt (831.55 \(\upmu \)g/L) \(>\) nickel (298.47 \(\upmu \)g/L). The high sulfate concentration makes sulfate the major controlling factor of electrical conductivity. The strong correlation among the majority of the elements indicates either similar geochemical behavior or a common origin, (mostly sulfides). Calculation of Acid Mine Drainage Index (AMDI) indicates that Darrehzar mine is classified as dangerous in view of AMD hazards. In Darrehzar porphyry copper mine, total rare earth element content (\(\Sigma \)REE) in AMD (5.54–417.76 \(\upmu \hbox {g L}^{-1})\) is higher than natural water (REE in upstream and downstream water is 0.87–1.40 and 0.83–1.71 \(\upmu \hbox {g L}^{-1}\)respectively). The North American Shale Composite (NASC) normalized REE patterns of AMDs revealed strong enrichment of middle REE (MREE), and heavy REE (HREE) compared with light REE (LREE). Speciation modeling indicates the predominance of aqueous species i.e., \(\hbox {LnSO}_{4}^{+}\), \(\hbox {Ln} (\hbox {SO}_{4})_{2}^{-}, \hbox {Ln}^{3+}, \hbox {LnCO}_{3}^{+}, \hbox {LnHCO}_{3}^{2+}\) and \(\hbox {Ln} (\hbox {CO}_{3})_{2}^{-}\) (Ln refers to any lanthanide element). In upstream, where pH is 7.2 \(\le \) pH, REEs primarily exist as \(\hbox {LnCO}_{3}^{+}\), and HREE bicarbonate complexes (Ln \((\hbox {CO}_{3})_{2}^{-})\) exceed those of LREEs. Based on mean geoaccumulation indices (\(I_\mathrm{{geo}}\)), Darrehzar river sediments at mine site display the following trend: \(\hbox {Cu}>\hbox {Mo}>\hbox {Pb}>\hbox {Sb}>\) Cd. Calculated potential ecological risk index (RI) indicates higher risk at mine site. The mean potential ecological risk factors \((\hbox {E}_{\mathrm{i}})\) for sediment metals display the following trend: \(\hbox {Mo}>\hbox {Cd}>\hbox {Cu}>\) As \(>hbox{Pb}>\hbox {Ni}>\hbox {Cr}> \hbox {Zn}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison AW, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/ PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user’s manual. U.S. Environmental Protections Agency, Report EPA/600/3-91/021

  • Amidi SM, Emami MH, Michel R (1984) Alkaline character of Eocene volcanism in the middle part of Iran and its geodynamic situation. Geologischen Rundschau 73:917–932

    Article  CAS  Google Scholar 

  • Ball JW, Nordstrom DK (1989) Final revised analyses of major and trace elements from acid mine waters in the Leviathan mine drainage basin, California and Nevada Oct 1981 to Oct 1982. USGS Water Resources Investigations Report 89-4138, Washington, DC

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron hydroxide: experimental evidence for Ce oxidation, Y–Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77

    Article  CAS  Google Scholar 

  • Behrooz M, Borden RC (2012) Physical, hydrologic, and aqueous chemical characterization of the ore Knob tailings pile (Ashe County, North Carolina, USA). Mine Water Environ 31:3–15

    Article  CAS  Google Scholar 

  • Berger BR, Ayuso RA, Wynn JC, Seal RR (2008) Preliminary model of porphyry copper deposits: US Geological Survay Open-File Report 2008-1321

  • Bhattacharya A, Routh J, Jack G, Bhattacharya P, Mörth M (2006) Environmental assessment of abandoned mine tailing in Adak, Västerbotten district (northern Sweden). Appl Geochem 21:1760–1780

    Article  CAS  Google Scholar 

  • Bowell RJ, Rees SB, Parshley JV (2000) Geochemical prediction of metal leaching and acid generation: geologic controls and baseline assessment. In: Cluer JK, Price JG, Struhsacker EM, Hardyman RF, Morria CL (eds) Geology and ore deposits 2000: the great basin and beyond. Geological Society of Nevada Symposium, Proceedure, pp 799–823

  • Brookins DG (1989) Aqueous geochemistry of rare earth elements. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Washington, pp 201–225

  • Butler BA (2009) Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Water Res 43:1392–1402

    Article  CAS  Google Scholar 

  • Casiot C, Leblanc M, Bruneel O, Personné JC, Koffi K, Elbazpoulichet F (2003) Formation of As-rich waters within a tailings impoundment (Carnoulès, France). Aqua Geochem 9:273–290

    Article  CAS  Google Scholar 

  • Church SE, Mast MA, Martin EP, Rich CL (2007) Mine inventory and compilation of mine-adit chemistry data. Integrated investigations of environmental effects of historical mining in the animas river watershed San Juan County Colorado USA USGA prof paper 1651, vol 1. Washington, DC, pp 259–310

  • Concas A, Ardau C, Cristini A, Zuddas P, Cao G (2006) Mobility of heavy metals from tailings to streams waters in a mining activity contaminated site. Chemosphere 63:244–253

    Article  CAS  Google Scholar 

  • Da Silva EF, Almeida SFP, Nunes ML, Luis AT, Borg F, Hedlund M, De Sa CM, Patinha C, Teixeira P (2009) Heavy metal pollution downstream the abandoned Coval da Mo mine (Portugal) and associated effects on epilithic diatom communities. Sci Total Environ 407:5620–5636

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Derakhshani R, Abdolzadeh M (2009) Geochemistry, mineralization and alteration zones of Darrehzar porphyry copper deposit, Kerman. Iran J Appl Sci 9:1628–1646

    Article  CAS  Google Scholar 

  • Diao Z, Shi T, Wang S (2013) Silane-based coatings on the pyrite for remediation of acid mine drainage. Water Res 47(13):4391–4402

    Article  CAS  Google Scholar 

  • Dimitrijevic MD (1973) Geology of Kerman region, Iran. Geological Survey of Iran. Report YU/52

  • Enders MS, Knickerbocker C, Titley SR, Southam G (2006) The role of bacteria in the supergene environment of the Morenci porphyry copper deposits, Greenlee County, Arizona. Econ Geol 101: 59–70

    Google Scholar 

  • Espana JS, Pamo EL, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356

    Google Scholar 

  • Favas PJC, João Pratas, Gomes MEP (2011) Hydrochemistry of superficial waters in the Adoria mine area (Northern Portugal): environmental implications. Environ Earth Sci. doi:10.1007/s12665-011-1097-6

    Google Scholar 

  • Ficklin WH, Plumlee GS, Smith KS, Mchugh JB (1992) Geochemical classification of mine drainages and natural drainages in mineralized areas. In: Maest Kharaka (ed) Water–rock interaction vol 1: low temperature environments. Balkema, Rotterdam, pp 381–384

    Google Scholar 

  • Fllipek LH, Nordstrom DK, Ficklin WH (1987) Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining district. Calif Environ Sci Technol 1087(27):388–396

    Google Scholar 

  • Forstner U, Ahlf W, Calmano W (1989) Studies on the transfer of heavy metals between sedimentary phases with a multi-chamber device: combined effects of salinity and redox variations. Marine Chem 28:145–158

    Article  Google Scholar 

  • Forstner U, Ahalf W, Calmano W, Kersten M (1990) Sediment criteria development-contributions from environmental geochemistry to water quality management. In: Heling D, Rothe P, Forstner U, Stoffers P (eds) Sedimets and environmental geochemistry: selected aspects and case histories. Springer-Verlag, Berlin, pp 311– 338

  • Gammons CH, Wood SA, Jonas JP, Madison JP (2003) Geochemistry of rare elements and uranium in the acidic Berkeley Pit Lake, Butte, Montana. Chem Geol 198:269–288

    Article  CAS  Google Scholar 

  • Gammons CH, Metesh JJ, Duaime TE (2005) An overview of the mining history and geology of Butte, Montana. Mine Water Environ 25: 70–75

    Article  Google Scholar 

  • Gimeno Serrano MJ, Auqueé Sanz LF, Nordstrom DK (2000) REE speciation in low-temperature acidic waters and the competitive effects of aluminium. Chem Geol 165:167–180

    Article  CAS  Google Scholar 

  • Gray NF (1996) The use of objective index for the assessment of the contamination of surface water and groundwater by acid mine drainage. J Chart Inst Water E 10:332–341

    Article  CAS  Google Scholar 

  • Gray NF, Delaney E (2008) Comparison of benthic macroinvertebrate indices for the assessment of the impact of acid mine drainage on an Irish river below an abandoned CueS mine. Environ Pollut 155:31–40

    Article  CAS  Google Scholar 

  • Grujicic B, Volickovic S (1991) Copper deposit Darrehzar mineral inventories computation. National Iranian Copper Industries, Exploration Department, Internal Report

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hansen HK, Yianatos JB, Ottosen LM (2005) Speciation and leachability of copper in mine tailings from porphyry copper mining-influence of particle size. Chemosphere 60:1497–1503

    Article  CAS  Google Scholar 

  • Henderson P (1984) Rare earth element geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Howitt D, Cramer D (2005) Introduction to SPSS in psychology: with supplement for releases 10, 11, 12 and 13. Pearson, Harlow

    Google Scholar 

  • Janssen RPT, Verweij W (2003) Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands. Water Res 37:1320–1350

    Article  CAS  Google Scholar 

  • Johannesson KH, Lyons WB (1995) Rare earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Norhwest Territories, Canada. Chem Geol 119:209–223

    Article  CAS  Google Scholar 

  • Johannesson KH, Stetzenbach KJ, Hodge VF, Lyons WB (1996) Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions. Earth Planet Sci Lett 139:305–319

    Article  CAS  Google Scholar 

  • Johannesson KH, Zhou X (1999) Origin of middle rare earth element enrichments in acid waters of Canadian High Arctic Lake. Geochim Cosmochim Acta 63:153–165

    Article  CAS  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kim JJ, Kim SJ (2004) Seasonal factors controlling mineral precipitation in the acid mine drainage at Donghae coal mine, Korea. Sci Total Environ 325:181–191

    Article  CAS  Google Scholar 

  • Kipp GG, Stone JJ, Stetler LD (2009) Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota. Appl Geochem 24:2246–2255

    Article  CAS  Google Scholar 

  • Klungness GD, Byrne RH (2000) Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength. Polyhedron 19:99–107

    Article  CAS  Google Scholar 

  • Kuma JS (2011) Numerical indices of the severity of acidic mine drainage: broadening the applicability of the Gray acid mine drainage index Mine. Water Environ 30:67–74

    Google Scholar 

  • Leybourne MI, Cameron EM (2006) Composition of groundwaters associated with porphyry-Cu deposits, Atacama Desert, Chile-Elemental and isotopic constraints on water sources and water–rock reactions. Geochim Cosmochim Acta 70:1616–1635

    Article  CAS  Google Scholar 

  • Liu X, Byrne RH (1998) Comprehensive investigation of yttrium and rare earth element complexation by carbonate ions using ICP-MS spectrometry. J Solut Chem 27:803–815

    Article  CAS  Google Scholar 

  • Ma Y, Lu W, Lin C (2011) Downstream patterns of bed sediment-borne metals, minerals and organic matter in a stream system receiving acidic mine effluent: a preliminary study. J Geochem Explor 110:98–106

    Google Scholar 

  • Marchand EA (2002) Literature review, minerals and mine drainage. Water Environ Res 74(5):746–772

    Article  Google Scholar 

  • Mason B, Moore CB (1982) Principles of geochemistry, 4th edn. Wiley, New York

    Google Scholar 

  • Miller JR (1997) The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J Gechem Expl 58:101–118

    Article  CAS  Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    Article  CAS  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geojournal 2:108–118

    Google Scholar 

  • Müller G (1979) Schwermetalle in den Sedimenten des Rheins—Veranderungen seit 1971. Umsch Wiss Technol 79(24):778–783

    Google Scholar 

  • Nedimovic R (1973) Exploration for ore deposits in Kerman region. Geological Survay of Iran, vol 53. Report, p 247

  • Nelson BJ, Wood SA, Osiensky JL (2003) Partitioningof REE between solution and particulate matter in natural waters: a filtration study. J Solid State Chem 171:51–56

    Article  CAS  Google Scholar 

  • Nieto JM, Sarmiento AM, Olías M, Cánovas CR, Riba I, Kalman J, Delvalls A (2007) Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environ Int 33:445–455

    Article  Google Scholar 

  • Nordstrom DK, Carlson-Foscz V, Oreskes N (1995) Rare earth elements fractionation during acid weathering of San Juan Tuff, Colorado. Annual meeting of Geological Society of America, vol 27, A-199 (abstracts with program)

  • Olías M, Cerón J, Fernández I, Dela Rosa I (2005) Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain). Environ Pollut 135:53–64

    Article  Google Scholar 

  • Piepgras DJ, Wasserburg GJ, Dasch EJ (1979) The isotopic composition of Nd in different ocean masses. Earth Planet Sci Lett 45:223–236

    Article  CAS  Google Scholar 

  • Plaza-Toledo M (2005) Natural rock drainage associated with nnmined porphyry copper deposits in the Río Grande de Arecibo Watershed, Puerto Rico. M.Sc. thesis, Mayagüez, University of Puerto Rico

  • Plumlee GS (1994) Environmental geology models on mineral deposits. SEG Newslett 16:5–6

    Google Scholar 

  • Plumlee GS, Smith KS, Montour MR, Ficklin WH, Mosier EL (1999) Geologic controls on the composition of natural waters and mine water draining diverse mineral-deposit types. Rev Econ Geol 6B:373–432

    Google Scholar 

  • Quinn KA, Byrne RH, Schijf J (2004) Comparative scavenging of yttrium and the rare earth elements in seawater: competitive influences of solution and surface chemistry. Aqua Geochem 10:59–80

    Article  CAS  Google Scholar 

  • Ranjbar H (1997) Lithogeochemical patterns associated with the Darrehzar porphyry Cu deposit, Pariz area. Iran CIM Bull 90:85–90

    CAS  Google Scholar 

  • Ranjbar H, Hassanzadeh H, Torbati M, Ilaghi O (2001) Integration and analysis of airborne geophysical data of the Darrehzar area, Kerman Province, Iran, using principal component analysis. J Appl Geophys 48:33–41

    Article  Google Scholar 

  • Routh J, Bhattacharya A, Saraswathy A, Jacks G, Bhattacharya P (2007) Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Vasterbotten district (northern Sweden). J Geochem Explor 92:43–54

    Google Scholar 

  • Sakai H, Kojima Y, Satio K (1986) Distribution of heavy metals in water and sieved sediments in the Toyohira river. Water Res 20:559–567

    Article  CAS  Google Scholar 

  • Schijf J, Byrne RH (2004) Determination of \(\text{ SO }_{4}\beta _{1}\) for yttrium and the rare earth elements at I = 0.66 m and t = 25 \(^\circ {\text{ C }}\)-Implications for YREE solution speciation in sulfate-rich waters. Geochim Cosmochim Acta 68:2825–2837

  • Shafiei B, Haschke M, Shahabpour J (2008) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita 44:265–283. doi:10.1007/s00126-008-0216-0

    Article  Google Scholar 

  • Sharifi R, Moore F, Keshavarzi B (2013) Geochemical behavior and speciation modeling of rare earth elements in acid drainages at Sarcheshmeh porphyry copper deposit, Kerman Province, Iran, Elsevier. Chemie der Erde. doi:10.1016/j.chemer.2013.03.001

  • Shi G, Chen Z, Bi C, Li Y, Teng J, Wang L et al (2010) Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environ Pollut 158:694–703

    Article  CAS  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Berlin

    Book  Google Scholar 

  • Simonton DS, King S (2013) Hydrogen sulfide formation and potential health consequences in coal mining regions. Water Qual Expo Health 5(2):85–92. doi:10.1007/s12403-013-0090-6

  • Spears DA, Tarazona MRM, Lee S (1994) Pyrite in U.K. coals: its environmental significance. Fuel 37:1051–1055

    Article  Google Scholar 

  • Subramanian V, Van Grieken R, Vant dack L (1987) Heavy metals distribution in the sediments of Ganges and Brahamputra rivers. Environ Geol Water Sci 9:93–108

    Google Scholar 

  • Tabaksblat LS (2002) Specific features in the formation of the mine water microelement composition during ore mining. Water Resour 29:333–345

    CAS  Google Scholar 

  • Tao X, Wu Pan, Tang C, Liu H, Sun J (2012) Effect of acid mine drainage on a karst basin: a case study on the high-As coal mining area in Guizhou province, China. Environ Earth Sci 65:631–638

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Verplanck PL, Nordstrom DK, Taylor HE, Kimball BA (2004) Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Appl Geochem 19:1339–1354

    Article  CAS  Google Scholar 

  • Wood SA, Gammons CH, Parker SR (2006) The behaviour of rare earth elements in naturally and anthropogenically acidified waters. J Alloys Compd 418:161–165

    Article  CAS  Google Scholar 

  • Worrall F, Pearson DG (2001a) The development of acidic groundwaters in coalbearing strata: part I. Rare earth element fingerprinting. Appl Geochem 16:1465–1480

    Article  CAS  Google Scholar 

  • Worrall F, Pearson DG (2001b) Water–rock interaction in an acidic mine discharge as indicated by rare earth element patterns. Geochim Cosmochim Acta 65:3027–3040

    Article  CAS  Google Scholar 

  • Zhao F, Cong Z, Sun H, Ren D (2007) The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province. North China Int J Coal Geol 70:184–192

    Article  CAS  Google Scholar 

  • Zheng LG, Liu GJ, Kang Y, Yang RK (2010) Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China. Environ Monit Assess 166:379–386. doi:10.1007/s10661-009-1009-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are sincerely grateful to the cooperation of the Research and Development Division of the National Iranian Copper Industries Company (NICICo.) especially S. Ghasemi, and E. Esmaeilzadeh for providing financial support and access to sampling and analysis for the present study. Thanks are also extended to the medical geology research center of Shiraz University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Soltani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltani, N., Moore, F., Keshavarzi, B. et al. Geochemistry of Trace Metals and Rare Earth Elements in Stream Water, Stream Sediments and Acid Mine Drainage from Darrehzar Copper Mine, Kerman, Iran. Water Qual Expo Health 6, 97–114 (2014). https://doi.org/10.1007/s12403-014-0114-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-014-0114-x

Keywords

Navigation