Skip to main content

Advertisement

Log in

Enzyme Immobilization by Amperometric Biosensors with TiO2 Nanoparticles Used to Detect Phenol Compounds

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Nanoparticles of titanium dioxide (TiO2) have unique properties in creating an appropriate microenvironment for immobilizing biomolecules without loss of biological activity, and facilitating electron transference between the enzyme and surface of the electrode. TiO2 properties have led to its intensive use in building electrochemical biosensors. Another aspect is, the chemical process of sol–gel which offers new and interesting advantages in the encapsulation of biomolecules sensitive to heat and environmental conditions (enzymes, proteins, antibodies, and cells from plants, animals and micro-organisms), mainly due to a synthesized process at low temperatures. The nanomaterials produced by sol–gel have many advantages, including chemical inertia, physical rigidity, insignificant swelling in an aqueous medium, and porosity. For this reason, electrochemical biosensors consisting of nanomaterials have been extensively investigated and used in important industrial sectors, such as, those of pharmaceuticals, health, food, agriculture, and environment. They provide real-time data, which allows the control and traceability of each of the processes involved. Biosensors are devices that consist of one element of molecular recognition (biomolecules) and one transduction element. The objective of this work is to conduct a review of electrochemical biosensors using nanoparticles obtained from the sol–gel process and their potential application to measure phenol compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

MBTH:

Hydrazone 3-methyl-2-benzothiazolinone

PHEMA:

Hydrogel microparticles

PZ:

Biosensors piezoelectric

HCV:

Hepatitis C virus

HIV:

Virion infectivity factor

VH:

Individual domains

VHD:

Individual domains camelized

mV:

Millivolts

M:

Molarity

CNT:

Carbon nanotube

TiO2 :

Titanium oxide

Mm:

Millimolar

mA:

Milliamps

s:

Seconds

CSD:

Descomposición química en solución

NAD:

Nicotinamida adenina dinucleótido

NADP:

Nicotinamide adenine dinucleotide phosphate

H2O2 :

Hydrogen peroxide

pH:

Potencial de Hidrógeno

°C:

Degrees Celsius

nm:

Nanometers

EPR:

Electron paramagnetic resonance

AQ 29D:

Eastman polymers

References

  1. Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  2. Abdullah J, Ahmad M, Yook Heng L, Karuppiah N, Sidek H (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors 7:2238–2250

    Article  CAS  Google Scholar 

  3. Akarsu M, Asiltürk M, Sayilkan F, Kiraz N, Arpaҫa E, Sayilkan H (2006) A novel approach to the hydrothermal synthesis of anatase titania nanoparticles and the photocatalytic degradation of rhodamine B. Turk J Chem 30:333–343

    CAS  Google Scholar 

  4. Akshath US, Vinayaka AC, Thakur MS (2012) Quantum dots as nano plug-in’s for efficient NADH resonance energy routing. Biosens Bioelectron 38:411–415

    Article  CAS  Google Scholar 

  5. Alkasir RSJ, Ganesana M, Won YH, Stanciu L, Andreescu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol A. Biosens Bioelectron 26:43–49

    Article  CAS  Google Scholar 

  6. Andle JC, Vetelino JF (1994) Acoustic wave biosensors. Sens Actuator A Phys 44:167–176

    Article  Google Scholar 

  7. Andresson M, Oesterlund L, Ljungstroem S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalystic wet oxidation of phenol. J Phys Chem B 106:10674–10679

    Article  CAS  Google Scholar 

  8. Ani J, Savithri S, Surender G (2005) Characteristics of titania nanoparticles synthesized through low temperature aerosol process. Aerosol Air Qual Res 5:1–13

    CAS  Google Scholar 

  9. Antonelli ML, Spadaro C, Tornelli RF (2008) A microcalorimeter sensor for food and cosmetic analyses 1-malic acid determination. Talanta 74:1450–1454

    Article  CAS  Google Scholar 

  10. Babacan S, Pivarnik P, Letcher S, Rand AG (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens Bioelectron 15:615–621

    Article  CAS  Google Scholar 

  11. Baeumner AJ (2003) Biosensors for environmental pollutants and food contaminants. Anal Bioanal Chem 377:434–445

    Article  CAS  Google Scholar 

  12. Baronas R, Kulys J (2008) Modelling amperometric biosensors based on chemically modified electrodes. Sensors 8:4800–4820

    Article  CAS  Google Scholar 

  13. Baronas R, Ivanauskas F, Kulys J (2006) Mathematical modeling of biosensors based on an array of enzyme microreactors. Sensors 6:453–465

    Article  CAS  Google Scholar 

  14. Benvenuto P, Kafi AKM, Chen A (2009) High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays. J Electroanal Chem 627:76–81

    Article  CAS  Google Scholar 

  15. Bhand SG, Soundararajan S, Surugiu-Warnmark I, Milea JS, Dey ES, Yakovleva M, Danielsson B (2010) Fructose-selective calorimetric biosensor in flow injection analysis. Anal Chim Acta 668:13–18

    Article  CAS  Google Scholar 

  16. Blanchard J, Ribot F, Sanchez C, Bellot P, Trokiner A (2000) Structural characterization of titanium-oxo-polymers synthesized in the presence of protons or complexing ligands as inhibitors. J Non-Cryst Solids 265:83–97

    Article  CAS  Google Scholar 

  17. Campanella L, Bonanni A, Finotti E, Tomassetti M (2004) Biosensors for determination of total and natural antioxidant capacity of red and white wines: comparison with other spectrophotometric and fluorimetric methods. Biosens Bioelectron 19:641–651

    Article  CAS  Google Scholar 

  18. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  CAS  Google Scholar 

  19. Casella L, Granata A, Monzani E, Pievo R, Pattarello L, Bubacco L (2004) New aspects of the reactivity of tyrosinase. Micron 35:141–142

    Article  CAS  Google Scholar 

  20. Chavhan P, Reddy V, Kim C (2012) Nanostructured titanium oxide platform for application to ascorbic acid detection. Int J Electrochem Sci 7:5420–5428

    CAS  Google Scholar 

  21. Chawla S, Narang S, Pundir CS (2010) An amperometric polyphenol biosensor based on polyvinyl chloride membrane. Anal Methods 2:1106–1111

    Article  CAS  Google Scholar 

  22. Chawla S, Rawal R, Shabnam Kuhad RC, Pundir CS (2011) An amperometric polyphenol biosensor based on laccase immobilized on epoxy resin membrane. Anal Methods 3:709–714

    Article  CAS  Google Scholar 

  23. Chawla S, Rawal R, Kumar D, Pundir CS (2012) Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode. Anal Biochem 430:16–23

    Article  CAS  Google Scholar 

  24. Chen X, Dong S (2003) Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor. Biosens Bioelectron 18:999–1004

    Article  CAS  Google Scholar 

  25. Chen X, Mao S (2007) Titanium dioxide nanomaterials. Synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  26. Chouhan RS, VivekBabu K, Kumar MA, Neeta NS, Thakur MS, Amitha Rani BE, Pasha A, Karanth NGK, Karanth NG (2006) Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device. Biosens Bioelectron 21:1264–1271

    Article  CAS  Google Scholar 

  27. Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25:392–397

    Article  CAS  Google Scholar 

  28. Di Fusco M, Tortolini C, Deriu D, Mazzei F (2010) Laccase-based biosensor for the determination of polyphenol index in wine. Talanta 81:235–240

    Article  CAS  Google Scholar 

  29. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334:41–69

    Article  CAS  Google Scholar 

  30. Dornelles ML, Tatsuo KL (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237–256

    Article  Google Scholar 

  31. Durst RA, Baumner AJ, Murray RW, Buck RP, Andrieux CP (1997) Chemically modified electrodes: recommended terminology and definitions. Pure Appl Chem 69:1317–1323

    Article  CAS  Google Scholar 

  32. Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. ITBM-RBM 29:171–180

    Google Scholar 

  33. Elkaoutit M, Naranjo-Rodriguez I, Temsamani KR, de la Vega MD, de Cisneros JL (2007) Dual laccase tyrosinase based sonogel–carbon biosensor for monitoring polyphenols in beers. J Agric Food Chem 55:8011–8018

    Article  CAS  Google Scholar 

  34. Encarnação JM, Rosa LM, Rodrigues R, Pedro L, Aires da Silva F, Goncalves J, Ferreira G (2007) Piezoelectric biosensors for biorecognition analysis: application to the kinetic study of HIV-1 Vif protein binding to recombinant antibodies. J Biotechnol 132:142–148

    Article  CAS  Google Scholar 

  35. Feng X, Wang Q, Wang G, Qiu F (2006) Preparation of nano-TiO2 by ethanol-thermal method and its catalytic performance for synthesis of dibutyl carbonate by transesterification. Chin J Catal 27:195–196

    Article  CAS  Google Scholar 

  36. Ferapontova EE, Grigorenko VG, Egorov AM, Börchers T, Ruzgas T, Gorton L (2001) Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold. Biosens Bioelectron 16:147–157

    Article  CAS  Google Scholar 

  37. Fernandes CIS, Rebelo MJF (2009) Polyphenolic biosensors. Application in red wines. Port Electrochim Acta 27:457–462

    Article  CAS  Google Scholar 

  38. Fernandes SC, de Oliveira IWZ, Fatibello-Filho O, Spinelli A, Vieira IC (2008) Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sens Actuators B Chem 133:202–207

    Article  CAS  Google Scholar 

  39. Galceran M, Pujol MC, Aguiló M, Díaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J Sol-Gel Sci Technol 42:79–88

    Article  CAS  Google Scholar 

  40. Gamella M, Campuzano S, Reviejo AJ, Pingarroän JM (2006) Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J Agric Food Chem 54:7960–7967

    Article  CAS  Google Scholar 

  41. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Lacobazzi V, Palmieri F, D’ Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531

    Article  CAS  Google Scholar 

  42. Ghindilis AL, Atanasov P, Wilkins M, Wilkins E (1998) Immunosensors: electrochemical sensing and other engineering approaches. Biosens Bioelectron 13:113–131

    Article  CAS  Google Scholar 

  43. Ghorai TK, Dhak D, Biswas SK, Dalai S, Pramanik P (2007) Photocatalyc oxidation of organic dyes by nano-sized metalmolybdate incorporated titanium dioxide (MxMoxTi1 − xO6) (M = Ni, Cu, Zn) photocatalysts. J Mol Catal A Chem 273:224–229

    Article  CAS  Google Scholar 

  44. Gochev VK, Krastanov AI (2007) Fungal Laccases (Review). Bulg J Agric Sci 13:75–83

    Google Scholar 

  45. Gomes SASS, Rebelo MJF (2003) A new laccase biosensor for polyphenols determination. Sensors 3:166–175

    Article  CAS  Google Scholar 

  46. Gooding JJ (2006) Biosensor technology for detecting biological warfare agents: recent progress and future trends. Anal Chim Acta 559:137–151

    Article  CAS  Google Scholar 

  47. Gopal M, Chan W, De Jonghe L (1997) Room temperature synthesis of crystalline metal oxides. J Mater Sci 32:6001–6008

    Article  CAS  Google Scholar 

  48. Gramss G, Voigt K-D, Firsche B (1999) Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38:1481–1494

    Article  CAS  Google Scholar 

  49. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  Google Scholar 

  50. Guo C, Hu F, Ming LC, Kang SP (2008) Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagent less hydrogen peroxide biosensor. Biosens Bioelectron 24:819–824

    Article  CAS  Google Scholar 

  51. Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol-gel matrix for applications in biosensors problems and future prospects. Biosens Bioelectron 22:2387–2399

    Article  CAS  Google Scholar 

  52. Gupta S, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  CAS  Google Scholar 

  53. Gupta SM, Tripathi M (2012) A review on the synthesis of TiO2 nanoparticles by solution route. Cent Eur J Chem 10(2):279–294

    CAS  Google Scholar 

  54. Gupta KK, Jassal M, Agrawal AK (2008) Sol-gel derived titanium dioxide finishing of cotton fabric for self cleaning. Indian J Fibre Text Res 33:443–450

    CAS  Google Scholar 

  55. Haghbeen K, Jazii FR, Karkhane AA, Borojerdi SS (2004) Purification of tyrosinase from edible mushroom. Iran J Biotechnol 2:189–194

    CAS  Google Scholar 

  56. Han R, Cui L, Ai S, Yin S, Liu X, Qiu Y (2012) Amperometric biosensor based on tyrosinase immobilized in hydrotalcite-like compounds film for the determination of polyphenols. J Solid State Electrochem 16:449–456

    Article  CAS  Google Scholar 

  57. He J, Xu Y, Ma H, Zhang Q, Evans DG, Duran X (2006) Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase. J Colloid Sci Interface Sci 298:780–786

    Article  CAS  Google Scholar 

  58. Hervás PJP, Sánchez-Paniagua LM, López-Cabarcos E, López-Ruiz B (2006) Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosens Bioelectron 22:429–439

    Article  CAS  Google Scholar 

  59. Huczko A (2000) Template-based synthesis of nanomaterials. App Phys A Mater Sci Proc 70(4):365–376

    Article  CAS  Google Scholar 

  60. Ivnitski D, Atanassov P (2007) Electrochemical studies of intramolecular electron transfer in laccase from trametes versicolor. Electroanalysis 19:2307–2313

    Article  CAS  Google Scholar 

  61. Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem Int Ed Engl 39:4004–4032

    Article  CAS  Google Scholar 

  62. Jarosz-Wilkolazka A, Ruzgas T, Gorton L (2004) Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enz Microb Tech 35:238–241

    Article  CAS  Google Scholar 

  63. Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S (2002) A Method to construct a third generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 74:2217–2223

    Article  CAS  Google Scholar 

  64. Jiang Y, Tang W, Gao J, Zhou L, He Y (2014) Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzyme Microb Tech 55:1–6

    Article  CAS  Google Scholar 

  65. Jiménez C, León D (2009) Biosensores: aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios. VITAE, Rev Fac Quim Farm 16:144–154

    Google Scholar 

  66. Jolivet J (2000) Metal oxide chemistry and synthesis. From solution to solid state, Wiley

    Google Scholar 

  67. Júnior ARS, Rebelo MJF (2008) Biosensors for the polyphenolic content of wine determination. Portugaliae Electrochim Acta 26:117–124

    Article  Google Scholar 

  68. Kafi AKM, Chen A (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79:97–102

    Article  CAS  Google Scholar 

  69. Kafi AKM, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571

    Article  CAS  Google Scholar 

  70. Kausaite-Minkstimiene A, Mazeikoa V, Ramanavicienea A, Ramanavicius A (2011) Evaluation of amperometric glucose biosensors based on glucose oxidase encapsulated within enzymatically synthesized polyaniline and polypyrrole. Sens Actuators B Chem 158:278–285

    Article  CAS  Google Scholar 

  71. Kim M, Lee W (2003) Amperometric phenol biosensor based on sol–gel silicate/Nafion composite film. Anal Chim 479:143–150

    Article  CAS  Google Scholar 

  72. Kim B-H, Lee J-Y, Choa Y-H, Higuchi M, Mizutani N (2004) Preparation of TiO2 thin film by liquid sprayed mist CVD method. Mater Sci Eng B 107:289–294

    Article  CAS  Google Scholar 

  73. Klis M, Maicka E, Michota A, Bukowska J, Sek S, Rogalski J, Bilewicz R (2007) Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes. Electrochim Acta 52:5591–5598

    Article  CAS  Google Scholar 

  74. Kochana J, Nowak P, Jarosz-Wilkołazka A, Bieroń M (2008) Tyrosinase/laccase bionzyme biosensor for amperometric determination of phenolic compounds. Microchem J 89:171–174

    Article  CAS  Google Scholar 

  75. Kochana J, Gala A, Parczewski A, Adamski J (2008) Titania sol–gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Anal Bioanal Chem 391:1275–1281

    Article  CAS  Google Scholar 

  76. Kong T-Y, Boopathi M, Shim Y-B (2003) Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode. Biosens Bioelectron 19:227–232

    Article  CAS  Google Scholar 

  77. Kontos AI, Arabatzis IM, Tsoukleris DS, Kontos AG, Bernard MC, Petrakis DE, Falaras P (2005) Efficient photocatalysts by hydrothermal treatment of TiO2. Catal Today 101:275–281

    Article  CAS  Google Scholar 

  78. Kutner W, Wang J, Lher M, Buck RP (1998) Analytical aspects of chemically modified electrodes: classification, critical evaluation and recommendations. Pure Appl Chem 70:1301–1318

    Article  CAS  Google Scholar 

  79. Laurent S, Bridot JL, Elst LV, Muller RN (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2:427–449

    Article  CAS  Google Scholar 

  80. Lee Y, Lyu Y, Choi H, Lee W (2007) Amperometric tyrosinase biosensor based on carbon nanotube—titania—nafion composite film. Electroanal 19:1048–1054

    Article  CAS  Google Scholar 

  81. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  82. Li XL, Peng Q, Yi JX, Wang X, Li YD (2006) Near disperse TiO2 nanoparticles and nanorods. Chem Eur J 12:2383–2391

    Article  CAS  Google Scholar 

  83. Li A, Zhu Y, Xu J, Zhu W, Tian X (2008) Comparative study on the determination of assay for laccase of Trametes sp. Afr J Biochem Res 2:181–183

    CAS  Google Scholar 

  84. Li J, Han T, Wei H, Du J, Zhao X (2009) Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor. Biosens Bioelectron 25:773–777

    Article  CAS  Google Scholar 

  85. Linsebigler M, Lu G, Yates J (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  86. Liu SQ, Yu JH, Ju HX (2003) Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J Electroanal Chem 540:61–67

    Article  CAS  Google Scholar 

  87. Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S (2006) Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosens Bioelectron 21:2195–2201

    Article  CAS  Google Scholar 

  88. Lu J, Bender CJ, Mc Cracken J, Peisach J, Severns JC, Mc Millin DR (1992) Pulsed EPR studies of the type 2 copper binding site in the mercury derivate of laccase. Biochemestry 31:6265–6272

    Article  CAS  Google Scholar 

  89. Lu X, Zhang Q, Zhang L, Li J (2006) Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem Commun 8:874–878

    Article  CAS  Google Scholar 

  90. Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the sol–gel process. Acc Chem Res 40:810–818

    Article  CAS  Google Scholar 

  91. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686

    Article  CAS  Google Scholar 

  92. Malekshashi MR, Ansaroudi K, Veladi H, Bahrami M (2013) Numerical comparison between nonisolated and isolated metal-electrode-based dielectrophoresis cell separation. Sensors Mat 25(9):653–655

    Google Scholar 

  93. Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578:59–74

    Article  CAS  Google Scholar 

  94. McGuirl M, Dooley DM (1999) Copper-containing oxidases. Curr Opin Chem Biol 3:138–144

    Article  CAS  Google Scholar 

  95. Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20:1113–1126

    Article  CAS  Google Scholar 

  96. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237–256

    Article  CAS  Google Scholar 

  97. Ming-Hung LT (2008) Over-the-counter biosensors: past, present, and future. Sensors 8:5535–5559

    Article  CAS  Google Scholar 

  98. Mohanty SP, Kougianos E (2006) Biosensors: a tutorial review. IEEE Potentials 25:35–40

    Article  Google Scholar 

  99. Mohidem N, Mat H (2009) The catalytic activity of laccase immobilized in sol-gel silica. J Appl Sci 9:3141–3145

    Article  CAS  Google Scholar 

  100. Montereali MR, Della Seta L, Vastarella W, Pilloton R (2010) A disposable Laccase-Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J Mol Catal B Enzym 64:189–194

    Article  CAS  Google Scholar 

  101. Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42:193–209

    CAS  Google Scholar 

  102. Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol–gel materials. Materials 3:2196–2217

    Article  CAS  Google Scholar 

  103. Muscat J, Swamy V, Harrison NM (2002) First-principles calculations of the phase stability of TiO2. Phy Rev B 65:1–15

    Google Scholar 

  104. Nakamura H, Karube I (2003) Current research activity in biosensors. Anal and Bioanal Chem 377:466–468

    Article  CAS  Google Scholar 

  105. Nam WS, Han GY (2003) Characterization and photocatalytic performance of nanosize TiO2 powders prepared by the solvothermal method. Korean J Chem Eng 20(6):1149–1153

    Article  CAS  Google Scholar 

  106. Neppoliana BY (2005) Preparation of unique TiO2 nano-particle photocatalysts by a multi-gelation method for control of the physicochemical parameters and reactivity. Catal Lett 105:111–117

    Article  CAS  Google Scholar 

  107. Pang X, He D, Luo S, Cai Q (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensor Actuator B 137:134–138

    Article  CAS  Google Scholar 

  108. Park SA, Jang E, Koh WG, Kim B (2010) Fabrication and characterization of optical biosensors using polymer hydrogel microparticles and enzyme–quantum dot conjugates. Sensor Actuator B 150:120–125

    Article  CAS  Google Scholar 

  109. Peng F, Cai L, Huang L, Yu H, Wang H (2008) Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. J Solid State Chem 69:1657–1664

    Article  CAS  Google Scholar 

  110. Pérez LB, Merkoҫi A (2009) Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst 134:60–64

    Article  Google Scholar 

  111. Perullini M, Ferro Y, Durrieu C, Jobbágya M, Bilmes SA (2014) Sol-gel silica platforms for microalgae-based optical biosensors. J Biotechnol 179:65–70

    Article  CAS  Google Scholar 

  112. Pierre AC (2002) Introduction to sol–gel processing. Kluwer, Boston

    Google Scholar 

  113. Radhakrishnan N, Park J, Kim C-S (2012) An oxidase-based electrochemical fluidic sensor with high-sensitivity and low-interference by on-chip oxygen manipulation. Sensors 12:8955–8965

    Article  CAS  Google Scholar 

  114. Ramanathan R, Danielsson B (2001) Principles and applications of thermal biosensors. Biosens Bioelectron 16:417–423

    Article  CAS  Google Scholar 

  115. Rawal R, Chawla S, Pundir CS (2011) Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyaniline gold electrode. Anal Biochem 419:196–204

    Article  CAS  Google Scholar 

  116. Rawal R, Chawla S, Malik P, Pundir CS (2012) An amperometric biosensor based on laccase immobilized onto MnO2NPs/cMWCNT/PANI modified Au electrode. Int J Biol Macromol 51:175–181

    Article  CAS  Google Scholar 

  117. Rawal R, Chawla DS, Pundir CS (2012) An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tealeaves extract. Enzyme Microb Tech 51:179–185

    Article  CAS  Google Scholar 

  118. Ren J, Kang T, Xue R, Ge C, Chen S (2011) Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes. Microchim Acta 174:303–309

    Article  CAS  Google Scholar 

  119. Rodakiewicz-Nowak J (2000) Phenols oxidizing enzymes in water-restricted media. Top Catal 11(12):419–434

    Article  Google Scholar 

  120. Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    Article  CAS  Google Scholar 

  121. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  122. Selvakumar LS, Thakur MS (2012) Dipstick based immunochemiluminescence biosensor for the analysis of vitaminB12 in energy drinks: a novel approach. Anal Chim Acta 722:107–113

    Article  CAS  Google Scholar 

  123. Shan D, Zhu MJ, Han E, Xue HG, Cosnier S (2007) Calcium carbonate nanoparticles: a host matrix for the construction of highly sensitive amperometric phenol biosensor. Biosens Bioelectron 23:648–654

    Article  CAS  Google Scholar 

  124. Singh M, Verma N, Garg AK, Redhu N (2008) Urea biosensors. Sens Actuat B-Chem 134:345–351

    Article  CAS  Google Scholar 

  125. Skeva E, Girousi S (2012) A study of the antioxidative behavior of phenolic acids, in aqueous herb extracts, using a dsDNA biosensor. Cent Eur J Chem 10:1280–1289

    CAS  Google Scholar 

  126. Skládal P, Dos Santos RC, Yamanaka H, Costa PI (2004) Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. J Virol Methods 117:145–151

    Article  CAS  Google Scholar 

  127. Sousa CP, Polo AS, Torresi RM, Córdoba de Torresi IS, Alves WA (2010) Chemical modification of a nanocrystalline TiO2 film for efficient electricconnection of glucose oxidase. J Colloid Interf Sci 346:442–447

    Article  CAS  Google Scholar 

  128. Streffer K (2002) BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells These. University of Postdam, Germany

    Google Scholar 

  129. Sung-Seen C, Lee SG, Soon Im S, Hun Kim S, Joo YL (2003) Silica nanofibers from electrospinning/sol-gel process. J Mat Sci Lett 22:891–893

    Article  Google Scholar 

  130. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133

    Article  CAS  Google Scholar 

  131. Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53:1309–1316

    Article  CAS  Google Scholar 

  132. Thakur MS, Ragavan KV (2013) Biosensors in food processing. J Food Sci Technol 50:625–641

    Article  CAS  Google Scholar 

  133. Tombelli S, Minunni M, Mascini M (2005) Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices. Methods 37:48–56

    Article  CAS  Google Scholar 

  134. Topoglidis E, Cass AEG, Gilardi G, Sadeghi S, Beaumont N, Durrant JR (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111–5113

    Article  CAS  Google Scholar 

  135. Topoglidis E, Cass AEG, O’Regan B, Durrant JR (2001) Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem 517:20–27

    Article  CAS  Google Scholar 

  136. Tsai Y-C, Chiu C-C (2007) Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensors Actuator B Chem 125:10–16

    Article  CAS  Google Scholar 

  137. Ueda M, Uchibayashi Y, Otsuka-Yao-Matsuo S, Okura T (2008) Hydrothermal synthesis of anatase-type TiO2 films on Ti and Ti-Nb substrates. J Alloy Comp 459:369–376

    Article  CAS  Google Scholar 

  138. Velasco-Garcia MN (2009) Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin Cell Dev Biol 20:27–33

    Article  CAS  Google Scholar 

  139. Vermeir S, Nicolai BM, Verboven P, Van Gerwen P, Baeten B, Hoflack L, Vulsteke Durst RA, Baumner AJ, Murray RW, Buck RP, Andrieux CP (1997) Chemically modified electrodes: recommended terminology and definitions. Pure Appl Chem 69:1317–1323

    Google Scholar 

  140. Voort D, Mcheil MC, Renneberg R, Korf J, Hermens WT, Glatz JFC (2005) Biosensors: basic features and application for fatty acid-binding protein, an early plasma marker of myocardial ınjury. Sensors Actuator B Chem 105:50–59

    Article  CAS  Google Scholar 

  141. Wang B, Zhang S, Dong S (2000) Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens Bioelectron 15:397–402

    Article  CAS  Google Scholar 

  142. Wang H-S, Pan Q-X, Wang G-X (2005) A biosensor based on immobilization of horseradish peroxidase in chitosan matrix cross-linked with glyoxal for amperometric determination of hydrogen peroxide. Sensors 5:266–276

    Article  CAS  Google Scholar 

  143. Wang F, Shi Z, Gong F, Jiu J, Adachi M (2007) Morphology control of anatase TiO2 by surfactant-assisted by hydrothermal method. Chin J Chem Eng 15:754–759

    Article  CAS  Google Scholar 

  144. Wang J, Gu M, Di J, Gao Y, Wu Y, Tu Y (2007) A carbon nanotube/silica sol–gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor. Bioprocess Biosyst Eng 30:289–296

    Article  CAS  Google Scholar 

  145. Wang P, Liu M, Kan JQ (2009) Amperometric phenol biosensor based on polyaniline. Sens Actuators B Chem 140:577–584

    Article  CAS  Google Scholar 

  146. Wang L, Ran Q, Tian Y, Ye S, Xu J, Xian Y, Peng R, Jin L (2010) Covalent grafting tyrosinase and its application in phenolic compounds detection. Microchim Acta 171:217–223

    Article  CAS  Google Scholar 

  147. Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6:193–207

    Article  CAS  Google Scholar 

  148. Wight AP, Davis ME (2002) Design and preparation of organic–inorganic hybrid catalysts. Chem Rev 102:3589–3614

    Article  CAS  Google Scholar 

  149. Wu JM (2004) Low temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J Cryst Growth 269:347–355

    Article  CAS  Google Scholar 

  150. Wu JM, Hayakawa S, Tsuru K, Osaka A (2002) Porous titania films prepared from interactions of titanium with hydrogen peroxide solution. Scripta Mater 46:101–106

    Article  CAS  Google Scholar 

  151. Xia W, Li YY, Wan YJ, Chen T, Wei J, Lin Y, Xu SQ (2010) Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles. Biosens Bioelectron 25:2253–2258

    Article  CAS  Google Scholar 

  152. Xie Y, Zhou L, Huang H (2007) Bioelectrocatalytic application of titania nanotube array for molecule detection. Biosens Bioelectron 22:2812–2818

    Article  CAS  Google Scholar 

  153. XinMan T, ShengLian L, XuBiao L, YingJie Z, Li F, JingHong L (2011) Metal chelate affinity to immobilize horseradish peroxidase on functionalized agarose/CNTs composites for the detection of catechol. Sci China Chem 54:1319–1326

    Article  CAS  Google Scholar 

  154. Xu Q, Mao C, Liu N-N, Zhu J-J, Sheng J (2006) Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron 22:768–773

    Article  CAS  Google Scholar 

  155. Yang S, Li Y, Jiang X, Chen Z, Lin X (2006) Horseradish peroxidase biosensor based on layer-by-layer technique for the determination of phenolic compounds. Sens Actuator B Chem 114:774–780

    Article  CAS  Google Scholar 

  156. Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase: properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  157. Yaropolov AI, Shleev SV, Morozova OV, Zaitseva EA, Marko-Varga G, Emneus J, Gorton L (2005) An amperometric biosensor based on laccase immobilized in polymer matrices for determining phenolic compounds. J Anal Chem 60:553–557

    Article  CAS  Google Scholar 

  158. Yodyingyong S, Sae-Kung C, Panijpan B, Triampo W, Triampo D (2011) Physicochemical properties of nanoparticles titania from alcohol burner calcination. Bull Chem Soc Ethiop 25:263–272

    Article  CAS  Google Scholar 

  159. Yu J, Ju H (2003) Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal Chem 74:3579–3583

    Article  CAS  Google Scholar 

  160. Yu J, Ju H (2003) Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol–gel film. Anal Chem A486:209–216

    Google Scholar 

  161. Yu J, Liu S, Ju H (2003) Mediator-free phenol sensor based on titania sol_/gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosens Bioelectron 19:509–514

    Article  CAS  Google Scholar 

  162. Yu D, Blankert B, Vire JC, Kauffmann JM (2005) Biosensors in drug discovery and drug analysis. Anal Lett 38:1687–1701

    Article  CAS  Google Scholar 

  163. Zhang T, Tian B, Kong J, Yang J, Liu B (2003) A sensitive mediator-free tyrosinase biosensor based on an inorganic–organic hybrid titania sol-gel matrix. Anal Chim Acta 489:199–206

    Article  CAS  Google Scholar 

  164. Zhong H, Yuan H, Chai Y, Li W, Zhang Y, Wang W (2011) Amperometric biosensor for hydrogen peroxide based on horseradish peroxidase onto gold nanowires and TiO2 nanoparticles. Bioproc Biosyst Eng 34:923–930

    Article  CAS  Google Scholar 

  165. Zhou H, Gan X, Wang J, Zhu X, Li X (2005) Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Anal Chem 77:6102–6104

    Article  CAS  Google Scholar 

  166. Zhou H, Liu L, Yin K, Liu S, Li G (2006) Electrochemical investigation on the catalytic ability of tyrosinase with the effect of nano titanium dioxide. Electrochem Commun 8:168–1172

    Google Scholar 

Download references

Acknowledgments

CONACYT through the projector sabbatical fellowships foreign assigned to Ma. Guadalupe Garnica Romo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Garnica-Romo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Arcos, M., Garnica-Romo, M.G., Martinez-Flores, H.E. et al. Enzyme Immobilization by Amperometric Biosensors with TiO2 Nanoparticles Used to Detect Phenol Compounds. Food Eng Rev 8, 235–250 (2016). https://doi.org/10.1007/s12393-015-9129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9129-8

Keywords

Navigation