Skip to main content
Log in

1H Nuclear Magnetic Resonance Relaxometry and Magnetic Resonance Imaging and Applications in Food Science and Processing

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Low-field bench top 1H nuclear magnetic resonance (LF-NMR) relaxometry instruments have been increasingly popular as analytical tools for engineering research. Magnetic resonance imaging, which is a more advanced approach to NMR technology, provides the researcher with images of the internal structure without any disruption to the sample and has been commonly used in medical applications in analysis of soft tissue. The non-invasive and non-destructive nature coupled with the high discriminative power of LF-NMR and MRI, makes them invaluable tools of analysis for a wide range of applications in food science. This review covers the basic concept behind NMR/MRI technology and discusses some of its most commonly used food applications. The review addresses the food scientist with no prior knowledge of NMR/MRI and aims to supply the reader with both the theory of the method and its fundamentals, as well as the practical uses in scientific research and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Altan A, Lavenson DM, McCarthy MJ, McCarthy KL (2011) Oil migration in chocolate and almond product confectionery systems. J Food Sci 76(6):E489–E494. doi:10.1111/j.1750-3841.2011.02233.x

    Article  CAS  Google Scholar 

  2. Altan A, Oztop MH, McCarthy KL, McCarthy MJ (2011) Monitoring changes in feta cheese during brining by magnetic resonance imaging and NMR relaxometry. J Food Eng 107(2):200–207. doi:10.1016/j.jfoodeng.2011.06.023

    Article  Google Scholar 

  3. Astruc T (2014) MUSCLE FIBER TYPES AND MEAT QUALITY. In: Dikeman M, Devine C (eds) Encyclopedia of meat sciences, 2nd edn. Academic Press, Oxford, pp 442–448

    Chapter  Google Scholar 

  4. Aursand IG, Erikson U, Veliyulin E (2010) Water properties and salt uptake in Atlantic salmon fillets as affected by ante-mortem stress, rigor mortis, and brine salting: a low-field H-1 NMR and H-1/Na-23 MRI study. Food Chem 120(2):482–489. doi:10.1016/j.foodchem.2009.10.041

    Article  CAS  Google Scholar 

  5. Bajd F, Sersa I (2011) Continuous monitoring of dough fermentation and bread baking by magnetic resonance microscopy. Magn Reson Imaging 29(3):434–442. doi:10.1016/j.mri.2010.10.010

    Article  Google Scholar 

  6. Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier Science, Amsterdam

    Google Scholar 

  7. Bertram HC, Rasmussen M, Busk H, Oksbjerg N, Karlsson AH, Andersen HJ (2002) Changes in porcine muscle water characteristics during growth—an in vitro low-field NMR relaxation study. J Magn Reson 157(2):267–276. doi:10.1006/jmre.2002.2600

    Article  CAS  Google Scholar 

  8. Bertram HC, Wiking L, Nielsen JH, Andersen HJ (2005) Direct measurement of phase transitions in milk fat during cooling of cream—a low-field NMR approach. Int Dairy J 15(10):1056–1063. doi:10.1016/j.idairyj.2004.10.005

    Article  CAS  Google Scholar 

  9. Bertsch F, Mattner J, Stehling MK, Müller-Lisse U, Peller M, Loeffler R et al (1998) Non-invasive temperature mapping using MRI: comparison of two methods based on chemical shift and T1-relaxation. Magn Reson Imaging 16(4):393–403. doi:10.1016/S0730-725X(97)00311-1

    Article  CAS  Google Scholar 

  10. Bonny JM, Rouille J, Della Valle G, Devaux MF, Douliez JP, Renou JP (2004) Dynamic magnetic resonance microscopy of flour dough fermentation. Magn Reson Imaging 22(3):395–401. doi:10.1016/j.mri.2004.01.020

    Article  Google Scholar 

  11. Bouhrara M, Clerjon S, Damez JL, Chevarin C, Portanguen S, Kondjoyan A, Bonny JM (2011) Dynamic MRI and thermal simulation to interpret deformation and water transfer in meat during heating. J Agric Food Chem 59(4):1229–1235. doi:10.1021/Jf103384d

    Article  CAS  Google Scholar 

  12. Bouhrara M, Lehallier B, Clerjon S, Damez JL, Bonny JM (2012) Mapping of muscle deformation during heating: in situ dynamic MRI and nonlinear registration. Magn Reson Imaging 20(3):422–430. doi:10.1016/j.mri.2011.10.002

    Article  Google Scholar 

  13. Castell-Palou A, Rossello C, Femenia A, Bon J, Simal S (2011) Moisture profiles in cheese drying determined by TD-NMR: mathematical modeling of mass transfer. J Food Eng 104(4):525–531. doi:10.1016/j.jfoodeng.2011.01.010

    Article  Google Scholar 

  14. Chassagne-Berces S, Leitner M, Melado A, Barreiro P, Correa EC, Blank I, Chanvrier H (2011) Effect of fibers and whole grain content on quality attributes of extruded cereals. Procedia Food Sci 1:17–23. doi:10.1016/j.profoo.2011.09.004

    Article  Google Scholar 

  15. Chayaprasert W, Stroshine R (2005) Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor. Postharvest Biol Technol 36(3):291–301. doi:10.1016/j.postharvbio.2005.02.006

    Article  Google Scholar 

  16. Chen FL, Wei YM, Zhang B (2010) Characterization of water state and distribution in textured soybean protein using DSC and NMR. J Food Eng 100(3):522–526. doi:10.1016/j.jfoodeng.2010.04.040

    Article  CAS  Google Scholar 

  17. Choi YJ, McCarthy KL, McCarthy MJ, Kim MH (2007) Oil migration in chocolate. Appl Magn Reson 32(1–2):205–220. doi:10.1007/s00723-007-0013-4

    Article  CAS  Google Scholar 

  18. Ciampa A, Dell’Abate MT, Masetti O, Valentini M, Sequi P (2010) Seasonal chemical–physical changes of PGI Pachino cherry tomatoes detected by magnetic resonance imaging (MRI). Food Chem 122(4):1253–1260. doi:10.1016/j.foodchem.2010.03.078

    Article  CAS  Google Scholar 

  19. Cioica N, Fechete R, Cota C, Nagy EM, David L, Cozar O (2013) NMR relaxation investigation of the native corn starch structure with plasticizers. J Mol Struct 1044:128–133. doi:10.1016/j.molstruc.2013.01.037

    Article  CAS  Google Scholar 

  20. Clark CJ, MacFall JS (2003) Quantitative magnetic resonance imaging of ‘Fuyu’ persimmon fruit during development and ripening. Magn Reson Imaging 21(6):679–685

    Article  Google Scholar 

  21. Collewet G, Bogner P, Allen P, Busk H, Dobrowolski A, Olsen E, Davenel A (2005) Determination of the lean meat percentage of pig carcasses using magnetic resonance imaging. Meat Sci 70(4):563–572. doi:10.1016/j.meatsci.205.02.005

    Article  CAS  Google Scholar 

  22. Collewet G, Bugeon J, Idier J, Quellec S, Quittet B, Cambert M, Haffray P (2013) Rapid quantification of muscle fat content and subcutaneous adipose tissue in fish using MRI. Food Chem 138(2–3):2008–2015. doi:10.1016/j.foodchem.2012.09.131

    Article  CAS  Google Scholar 

  23. Cornillon P, Salim LC (2000) Characterization of water mobility and distribution in low- and intermediate-moisture food systems. Magn Reson Imaging 18(3):335–341. doi:10.1016/S0730-725x(99)00139-3

    Article  CAS  Google Scholar 

  24. d’Avila MA, Powell RL, Phillips RJ, Shapley NC, Walton JH, Dungan SR (2005) Magnetic resonance imaging (MRI): a technique to study flow an microstructure of concentrated emulsions. Braz J Chem Eng 22(1):49–60. doi:10.1590/S0104-66322005000100006

    Article  Google Scholar 

  25. Defraeye T, Lehmann V, Gross D, Holat C, Herremans E, Verboven P, Nicolai BM (2013) Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biol Technol 75:96–105. doi:10.1016/j.postharvbio.2012.08.009

    Article  Google Scholar 

  26. Derossi A, De Pilli T, Severini C, McCarthy MJ (2008) Mass transfer during osmotic dehydration of apples. J Food Eng 86(4):519–528. doi:10.1016/j.jfoodeng.2007.11.007

    Article  Google Scholar 

  27. El-Bakry M, Duggan E, O’Riordan ED, O’Sullivan M (2010) Effects of emulsifying salts reduction on imitation cheese manufacture and functional properties. J Food Eng 100(4):596–603. doi:10.1016/j.jfoodeng.2010.05.007

    Article  CAS  Google Scholar 

  28. El-Bakry M, Duggan E, O’Riordan ED, O’Sullivan M (2011) Casein hydration and fat emulsification during manufacture of imitation cheese, and effects of emulsifying salts reduction. J Food Eng 103(2):179–187. doi:10.1016/j.jfoodeng.2010.10.014

    Article  CAS  Google Scholar 

  29. El-Bakry M, Duggan E, O’Riordan ED, O’Sullivan M (2011) Effect of cation, sodium or potassium, on casein hydration and fat emulsification during imitation cheese manufacture and post-manufacture functionality. LWT Food Sci Technol 44(10):2012–2018. doi:10.1016/j.lwt.2011.07.007

    Article  CAS  Google Scholar 

  30. Esveld DC, van der Sman RGM, Witek MM, Windt CW, van As H, van Duynhoven JPM, Meinders MBJ (2012) Effect of morphology on water sorption in cellular solid foods. Part II: sorption in cereal crackers. J Food Eng 109(2):311–320. doi:10.1016/j.jfoodeng.2011.08.023

    Article  Google Scholar 

  31. Fan D, Ma S, Wang L, Zhao H, Zhao J, Zhang H, Chen W (2013) (1)H NMR studies of starch–water interactions during microwave heating. Carbohydr Polym 97(2):406–412. doi:10.1016/j.carbpol.2013.05.021

    Article  CAS  Google Scholar 

  32. Frías JM, Foucat L, Bimbenet JJ, Bonazzi C (2002) Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging. Chem Eng J 86(1–2):173–178. doi:10.1016/S1385-8947(01)00285-6

    Article  Google Scholar 

  33. Fukuoka M, Mihori T, Watanabe H (2000) MRI observation and mathematical model simulation of water migration in wheat flour dough during boiling. J Food Sci 65(8):1343–1348. doi:10.1111/j.1365-2621.2000.tb10609.x

    Article  CAS  Google Scholar 

  34. Ghosh PK, Jayas DS, Smith EA, Gruwel MLH, White NDG (2008) Mathematical modelling of wheat kernel drying with input from moisture movement studies using magnetic resonance imaging (MRI), Part II: model comparison with published studies. Biosyst Eng 100(4):547–554. doi:10.1016/j.biosystemseng.2008.04.014

    Article  Google Scholar 

  35. Ghosh PK, Jayas DS, Smith EA, Gruwel MLH, White NDG, Zhilkin PA (2008) Mathematical modelling of wheat kernel drying with input from moisture movement studies using magnetic resonance imaging (MRI), Part I: model development and comparison with MRI observations (vol 100, pg 389, 2008). Biosyst Eng 101(1):143. doi:10.1016/j.biosystemseng.2008.07.001

    Article  Google Scholar 

  36. Gonera A, Cornillon P (2002) Gelatinization of Starch/Gum/Sugar Systems Studied by using DSC, NMR, and CSLM. Starch 54(11):508–516. doi:10.1002/1521-379X(200211)54:11<508:AID-STAR508>3.0.CO;2-K

    Article  CAS  Google Scholar 

  37. Grenier A, Lucas T, Collewet G, Le Bail A (2003) Assessment by MRI of local porosity in dough during proving. Theoretical considerations and experimental validation using a spin-echo sequence. Magn Reson Imaging 21(9):1071–1086. doi:10.1016/s0730-725x(03)00194-2

    Article  CAS  Google Scholar 

  38. Grimault S, Lucas T, Quellec S, Mariette F (2004) Quantitative measurement of temperature by proton resonance frequency shift at low field: a general method to correct non-linear spatial and temporal phase deformations. J Magn Reson 170(1):79–87. doi:10.1016/j.jmr.2004.06.001

    Article  CAS  Google Scholar 

  39. Gudjonsdottir M, Gunnlaugsson VN, Finnbogadottir GA, Sveinsdottir K, Magnusson H, Arason S, Rustad T (2010) Process control of lightly salted wild and farmed atlantic cod (Gadus morhua) by Brine injection, brining, and freezing—a low field NMR study. J Food Sci 75(8):E527–E536. doi:10.1111/j.1750-3841.2010.01808.x

    Article  CAS  Google Scholar 

  40. Gudjonsdottir M, Jonsson A, Bergsson AB, Arason S, Rustad T (2011) Shrimp processing assessed by low field nuclear magnetic resonance, near infrared spectroscopy, and physicochemical measurements—the effect of polyphosphate content and length of prebrining on shrimp muscle. J Food Sci 76(4):E357–E367. doi:10.1111/j.1750-3841.2011.02112.x

    Article  CAS  Google Scholar 

  41. Hall LD, Evans SD, Nott KP (1998) Measurement of textural changes of food by MRI relaxometry. Magn Reson Imaging 16(5–6):485–492. doi:10.1016/S0730-725x(98)00116-7

    Article  CAS  Google Scholar 

  42. Harbourne N, Jacquier JC, O’Riordan D (2011) Effects of addition of phenolic compounds on the acid gelation of milk. Int Dairy J 21(3):185–191. doi:10.1016/j.idairyj.2010.10.003

    Article  CAS  Google Scholar 

  43. Hashemi RH, Bradley WG, Lisanti CJ (2010) MRI: the basics. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  44. Heil JR, Ozilgen M, McCarthy MJ (1993) Magnetic resonance imaging analysis of water migration and void formation in baking biscuits. Food Dehydration 89(297):39–45

    Google Scholar 

  45. Hills B (2010) Food properties, applications of NMR. In: Lindon JC (ed) Encyclopedia of spectroscopy and spectrometry, 2nd edn. Academic Press, Oxford, pp 671–679

    Chapter  Google Scholar 

  46. Hills BP, Wright KM, Belton PS (1989) Proton N.M.R. studies of chemical and diffusive exchange in carbohydrate systems. Mol Phys 67(6):1309–1326. doi:10.1080/00268978900101831

    Article  CAS  Google Scholar 

  47. Hong SW, Yan ZY, Otterburn MS, McCarthy MJ (1996) Magnetic resonance imaging (MRI) of a cookie in comparison with time-lapse photographic analysis (TLPA) during baking process. Magn Reson Imaging 14(7–8):923–927. doi:10.1016/S0730-725X(96)00183-X

    Article  CAS  Google Scholar 

  48. Horigane AK, Takahashi H, Maruyama S, Ohtsubo KI, Yoshida M (2006) Water penetration into rice grains during soaking observed by gradient echo magnetic resonance imaging. J Cereal Sci 44(3):307–316. doi:10.1016/j.jcs.2006.07.014

    Article  CAS  Google Scholar 

  49. Hulbert GJ, Litchfield JB, Schmidt SJ (1997) Determination of convective heat transfer coefficients using 2D MRI temperature mapping and finite element modeling. J Food Eng 34(2):193–201. doi:10.1016/S0260-8774(97)00058-7

    Article  Google Scholar 

  50. Hwang S-S, Cheng Y-C, Chang C, Lur H-S, Lin T-T (2009) Magnetic resonance imaging and analyses of tempering processes in rice kernels. J Cereal Sci 50(1):36–42. doi:10.1016/j.jcs.2008.10.012

    Article  Google Scholar 

  51. Ishida N, Naito S, Kano H (2004) Loss of moisture from harvested rice seeds on MRI. Magn Reson Imaging 22(6):871–875. doi:10.1016/j.mri.2004.01.054

    Article  Google Scholar 

  52. Janas S, Boutry S, Malumba P, Vander Elst L, Béra F (2010) Modelling dehydration and quality degradation of maize during fluidized-bed drying. J Food Eng 100(3):527–534. doi:10.1016/j.jfoodeng.2010.05.001

    Article  Google Scholar 

  53. Jin X, van der Sman RGM, Gerkema E, Vergeldt FJ, van As H, van Boxtel AJB (2011) Moisture distribution in broccoli: measurements by MRI hot air drying experiments. 11th Int Congress Eng Food (Icef11) 1:640–646. doi:10.1016/j.profoo.2011.09.096

    Google Scholar 

  54. Kara S, Mueller JJ, Liese A (2011) Online analysis methods for monitoring of bioprocesses. Chem Today 29(2):38–41

    CAS  Google Scholar 

  55. Kirtil E, Oztop MH, Sirijariyawat A, Ngamchuachit P, Barrett DM, McCarthy MJ (2014) Effect of pectin methyl esterase (PME) and CaCl2 infusion on the cell integrity of fresh-cut and frozen-thawed mangoes: an NMR relaxometry study. Food Res Int 66:409–416. doi:10.1016/j.foodres.2014.10.006

    Article  CAS  Google Scholar 

  56. Knoerzer K, Regier M, Schubert H (2006) Microwave heating: a new approach of simulation and validation. Chem Eng Technol 29(7):796–801. doi:10.1002/ceat.200600038

    Article  CAS  Google Scholar 

  57. Koizumi M, Naito S, Ishida N, Haishi T, Kano H (2008) A dedicated MRI for food science and agriculture. Food Sci Technol Res 14(1):74–82. doi:10.3136/Fstr.14.74

    Article  Google Scholar 

  58. Konez O (2011) Manyetik Rezonans Görüntüleme: Temel Bilgiler. http://konez.com/

  59. Kotwaliwale N, Curtis E, Othman S, Naganathan GK, Subbiah J (2012) Magnetic resonance imaging and relaxometry to visualize internal freeze damage to pickling cucumber. Postharvest Biol Technol 68:22–31. doi:10.1016/j.postharvbio.2011.12.022

    Article  Google Scholar 

  60. Lai H-M, Hwang S-C (2004) Water status of cooked white salted noodles evaluated by MRI. Food Res Int 37(10):957–966. doi:10.1016/j.foodres.2004.06.008

    Article  Google Scholar 

  61. Lee WL, McCarthy MJ, McCarthy KL (2010) Oil migration in 2-component confectionery systems. J Food Sci 75(1):E83–E89. doi:10.1111/j.1750-3841.2009.01454.x

    Article  CAS  Google Scholar 

  62. Li WM, Wang P, Xu XL, Xing T, Zhou GH (2014) Use of low-field nuclear magnetic resonance to characterize water properties in frozen chicken breasts thawed under high pressure. Eur Food Res Technol 239(2):183–188. doi:10.1007/s00217-014-2189-9

    Article  CAS  Google Scholar 

  63. Li ZG, Thomas C (2014) Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci Technol 35(2):138–150. doi:10.1016/j.tifs.2013.12.001

    Article  CAS  Google Scholar 

  64. Lopes-Da-Silva JA, Santos DMJ, Freitas A, Brites C, Gil AM (2007) Rheological and nuclear magnetic resonance (NMR) study of the hydration and heating of undeveloped wheat doughs. J Agric Food Chem 55(14):5636–5644. doi:10.1021/Jf070379+

    Article  CAS  Google Scholar 

  65. Lucas T, Doursat C, Grenier D, Wagner M, Trystram G, Flick D (2015) Modeling of bread baking with a new, multi-scale formulation of evaporation–condensation–diffusion and evidence of compression in the outskirts of the crumb. J Food Eng 149:24–37. doi:10.1016/j.jfoodeng.2014.07.020

    Article  Google Scholar 

  66. Lucas T, Grenier A, Quellec S, Collewet G, Le Bail A, Davenel A (2005) Use of MRI for the characterization of bread processes. In: Cauvain SP, Salmon SS, Young LS (eds) Using cereal science and technology for the benefit of consumers: proceedings of the 12th international ICC cereal and bread congress, 24–26th May, 2004, Harrogate, UK. Elsevier, Amsterdam, pp 199–203

    Google Scholar 

  67. Lucas T, Grenier A, Quellec S, Le Bail A, Davenel A (2005) MRI quantification of ice gradients in dough during freezing or thawing processes. J Food Eng 71(1):98–108. doi:10.1016/j.jfoodeng.2004.07.027

    Article  Google Scholar 

  68. Lucas T, Grenier D, Bornert M, Challois S, Quellec S (2010) Bubble growth and collapse in pre-fermented doughs during freezing, thawing and final proving. Food Res Int 43(4):1041–1048. doi:10.1016/j.foodres.2010.01.014

    Article  Google Scholar 

  69. Lucas T, Le Ray D, Barey P, Mariette F (2005) NMR assessment of ice cream: effect of formulation on liquid and solid fat. Int Dairy J 15(12):1225–1233. doi:10.1016/j.idairyj.2004.06.012

    Article  CAS  Google Scholar 

  70. Lucas T, Le Ray D, Mariette F (2007) Kinetics of water absorption and solute leaching during soaking of breakfast cereals. J Food Eng 80(2):377–384. doi:10.1016/j.jfoodeng.2005.11.006

    Article  Google Scholar 

  71. Lucas T, Musse M, Bornert M, Davenel A, Quellec S (2012) Temperature mapping in bread dough using SE and GE two-point MRI methods: experimental and theoretical estimation of uncertainty. Magn Reson Imaging 30(3):431–445. doi:10.1016/j.mri.2011.09.004

    Article  Google Scholar 

  72. Luyts A, Wilderjans E, Waterschoot J, Van Haesendonck I, Brijs K, Courtin CM, Delcour JA (2013) Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chem 139(1–4):120–128. doi:10.1016/j.foodchem.2013.01.062

    Article  CAS  Google Scholar 

  73. Maeda I, Horigane AK, Yoshida M, Aikawa Y (2009) Water diffusion in buckwheat noodles and wheat noodles during boiling and holding as determined from MRI and rectangular cylinder diffusion model. Food Sci Technol Res 15(2):107–116. doi:10.3136/fstr.15.107

    Article  Google Scholar 

  74. Maehara M, Ikeda K, Kurokawa H, Ohmura N, Ikeda S, Hirokawa Y, Sawada S (2014) Diffusion-weighted echo-planar imaging of the head and neck using 3-T MRI: investigation into the usefulness of liquid perfluorocarbon pads and choice of optimal fat suppression method. Magn Reson Imaging 32(5):440–445. doi:10.1016/j.mri.2014.01.011

    Article  Google Scholar 

  75. Mannina L, Sobolev AP, Viel S (2012) Liquid state 1H high field NMR in food analysis. Prog Nucl Magn Reson Spectrosc 66:1–39. doi:10.1016/j.pnmrs.2012.02.001

    Article  CAS  Google Scholar 

  76. Marcone MF, Wang S, Albabish W, Nie S, Somnarain D, Hill A (2013) Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res Int 51(2):729–747. doi:10.1016/j.foodres.2012.12.046

    Article  CAS  Google Scholar 

  77. Mariette F (2009) Investigations of food colloids by NMR and MRI. Curr Opin Colloid Interface Sci 14(3):203–211. doi:10.1016/j.cocis.2008.10.006

    Article  CAS  Google Scholar 

  78. Mariette F, Collewet G, Davenel A, Lucas T, Musse M (2007) Quantitative MRI in food science and food engineering eMagRes. Wiley, New York

    Google Scholar 

  79. McCarthy KL, McCarthy MJ (2008) Oil migration in chocolate–peanut butter paste confectionery as a function of chocolate formulation. J Food Sci 73(6):E266–E273. doi:10.1111/j.1750-3841.2008.00797.x

    Article  CAS  Google Scholar 

  80. McDaniel KA, White BL, Dean LL, Sanders TH, Davis JP (2012) Compositional and mechanical properties of peanuts roasted to equivalent colors using different time/temperature combinations. J Food Sci 77(12):C1292–C1298. doi:10.1111/j.1750-3841.2012.02979.x

    Article  CAS  Google Scholar 

  81. Melado A, Barreiro P, Rodríguez-Sinobas L, Fernández-Valle ME, Ruíz-Cabello J, Chassagne-Berces S, Chanvrier H (2011) MRI texture analysis as means for addressing rehydration and milk diffusion in cereals. Procedia Food Sci 1:625–631. doi:10.1016/j.profoo.2011.09.094

    Article  Google Scholar 

  82. Mikac U, Sepe A, Sersa I (2015) MR microscopy for noninvasive detection of water distribution during soaking and cooking in the common bean. Magn Reson Imaging 33(3):336–345. doi:10.1016/j.mri.2014.12.001

    Article  Google Scholar 

  83. Milczarek RR, Saltveit ME, Garvey TC, McCarthy MJ (2009) Assessment of tomato pericarp mechanical damage using multivariate analysis of magnetic resonance images. Postharvest Biol Technol 52(2):189–195. doi:10.1016/j.postharvbio.2009.01.002

    Article  Google Scholar 

  84. Mohoric A, Vergeldt F, Gerkema E, de Jager A, van Duynhoven J, van Dalen G, Van As H (2004) Magnetic resonance imaging of single rice kernels during cooking. J Magn Reson 171(1):157–162. doi:10.1016/j.jmr.2004.08.013

    Article  CAS  Google Scholar 

  85. Motwani T, Lanagan M, Anantheswaran RC (2012) State of water in starch–water systems in the gelatinization temperature range as investigated using dielectric relaxation spectroscopy. Carbohydr Polym 87(1):24–31. doi:10.1016/j.carbpol.2011.06.057

    Article  CAS  Google Scholar 

  86. Nestor G, Bankefors J, Schlechtriem C, Brannas E, Pickova J, Sandstrom C (2010) High-resolution H-1 magic angle spinning NMR spectroscopy of intact arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n-3 fatty acids, EPA and DHA. J Agric Food Chem 58(20):10799–10803. doi:10.1021/Jf103338j

    Article  CAS  Google Scholar 

  87. Nicolai BM, Bulens I, Baerdemaeker JD, Ketelaere BD, Hertog MLATM, Verboven P, Lammertyn J (2009) Chapter 15—Non-destructive evaluation: detection of external and internal attributes frequently associated with quality and damage. In: Prussia EBJFLSBE (ed) Postharvest handling, 2nd edn. Academic Press, San Diego, pp 421–441

    Chapter  Google Scholar 

  88. Nott KP, Hall LD (2005) Validation and cross-comparison of MRI temperature mapping against fibre optic thermometry for microwave heating of foods. Int J Food Sci Technol 40(7):723–730. doi:10.1111/j.1365-2621.2005.00992.x

    Article  CAS  Google Scholar 

  89. Nott KP, Halla LD, Bows JR, Hale M, Patrick ML (2000) MRI phase mapping of temperature distributions induced in food by microwave heating. Magn Reson Imaging 18(1):69–79. doi:10.1016/S0730-725X(99)00103-4

    Article  CAS  Google Scholar 

  90. Nutrition Facts (2014) Peanuts, all types, oil-roasted, with salt. http://nutritiondata.self.com/facts/legumes-and-legume-products/4357/2

  91. Nutrition Facts (2014) Raisins, seedless. http://nutritiondata.self.com/facts/fruits-and-fruit-juices/2050/2

  92. Otero L, Prestamo G (2009) Effects of pressure processing on strawberry studied by nuclear magnetic resonance. Innov Food Sci Emerg Technol 10(4):434–440. doi:10.1016/j.ifset.2009.04.004

    Article  CAS  Google Scholar 

  93. Oztop MH, Bansal H, Takhar P, McCarthy KL, McCarthy MJ (2014) Using multi-slice-multi-echo images with NMR relaxometry to assess water and fat distribution in coated chicken nuggets. LWT Food Sci Technol 55(2):690–694. doi:10.1016/j.lwt.2013.10.031

    Article  CAS  Google Scholar 

  94. Oztop MH, Rosenberg M, Rosenberg Y, McCarthy KL, McCarthy MJ (2010) Magnetic resonance imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels. J Food Sci 75(8):E508–E515. doi:10.1111/j.1750-3841.2010.01788.x

    Article  CAS  Google Scholar 

  95. Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL (2011) Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—a review. Meat Sci 89(2):111–124. doi:10.1016/j.meatsci.2011.04.007

    Article  Google Scholar 

  96. Pedersen HT, Munck L, Engelsen SB (2000) Low-field (1)H nuclear magnetic resonance and chemometrics combined for simultaneous determination of water, oil, and protein contents in oilseeds. J Am Oil Chem Soc 77(10):1069–1076. doi:10.1007/s11746-000-0168-4

    Article  CAS  Google Scholar 

  97. Pykett IL (2000) NMR—a powerful tool for industrial process control and quality assurance. IEEE Trans Appl Supercond 10(1):721–723. doi:10.1109/77.828333

    Article  Google Scholar 

  98. Rakesh V, Seo Y, Datta AK, McCarthy KL, McCarthy MJ (2010) Heat transfer during microwave combination heating: computational modeling and MRI experiments. AIChE J 56(9):2468–2478. doi:10.1002/Aic.12162

    CAS  Google Scholar 

  99. Regier M, Hardy EH, Knoerzer K, Leeb CV, Schuchmann HP (2007) Determination of structural and transport properties of cereal products by optical scanning, magnetic resonance imaging and Monte Carlo simulations. J Food Eng 81(2):485–491. doi:10.1016/j.jfoodeng.2006.11.025

    Article  Google Scholar 

  100. Renou JP, Foucat L, Bonny JM (2003) Magnetic resonance imaging studies of water interactions in meat. Food Chem 82(1):35–39. doi:10.1016/S0308-8146(02)00582-4

    Article  CAS  Google Scholar 

  101. Rieke V, Pauly KB (2008) MR Thermometry. J Magn Res Imaging JMRI 27(2):376–390. doi:10.1002/jmri.21265

    Article  Google Scholar 

  102. Ritota M, Gianferri R, Bucci R, Brosio E (2008) Proton NMR relaxation study of swelling and gelatinisation process in rice starch–water samples. Food Chem 110(1):14–22. doi:10.1016/j.foodchem.2008.01.048

    Article  CAS  Google Scholar 

  103. Ruiz-Altisent M, Ruiz-Garcia L, Moreda GP, Lu RF, Hernandez-Sanchez N, Correa EC, Garcia-Ramos J (2010) Sensors for product characterization and quality of specialty crops—a review. Comput Electron Agric 74(2):176–194. doi:10.1016/j.compag.2010.07.002

    Article  Google Scholar 

  104. Ruiz-Cabrera MA, Gou P, Foucat L, Renou JP, Daudin JD (2004) Water transfer analysis in pork meat supported by NMR imaging. Meat Sci 67(1):169–178. doi:10.1016/j.meatsci.2003.10.005

    Article  CAS  Google Scholar 

  105. Rumsey TR, McCarthy KL (2012) Modeling oil migration in two-layer chocolate-almond confectionery products. J Food Eng 111(1):149–155. doi:10.1016/j.jfoodeng.2012.01.006

    Article  CAS  Google Scholar 

  106. Salomonsen T, Sejersen MT, Viereck N, Ipsen R, Engelsen SB (2007) Water mobility in acidified milk drinks studied by low-field H-1 NMR. Int Dairy J 17(4):294–301. doi:10.1016/j.idairyj.2006.04.003

    Article  CAS  Google Scholar 

  107. Sanchez-Alonso I, Martinez I, Sanchez-Valencia J, Careche M (2012) Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L.) by low field NMR. Food Chem 135(3):1626–1634. doi:10.1016/j.foodchem.2012.06.038

    Article  CAS  Google Scholar 

  108. Sanchez-Alonso I, Moreno P, Careche M (2014) Low field nuclear magnetic resonance (LF-NMR) relaxometry in hake (Merluccius merluccius, L.) muscle after different freezing and storage conditions. Food Chem 153:250–257. doi:10.1016/j.foodchem.2013.12.060

    Article  CAS  Google Scholar 

  109. Sekiyama Y, Horigane AK, Ono H, Irie K, Maeda T, Yoshida M (2012) T2 distribution of boiled dry spaghetti measured by MRI and its internal structure observed by fluorescence microscopy. Food Res Int 48(2):374–379. doi:10.1016/j.foodres.2012.05.019

    Article  Google Scholar 

  110. Shaarani SM, Nott KP, Hall LD (2006) Combination of NMR and MRI quantitation of moisture and structure changes for convection cooking of fresh chicken meat. Meat Sci 72(3):398–403. doi:10.1016/j.meatsci.2005.07.017

    Article  CAS  Google Scholar 

  111. Sorland GH, Larsen PM, Lundby F, Rudi AP, Guiheneuf T (2004) Determination of total fat and moisture content in meat using low field NMR. Meat Sci 66(3):543–550. doi:10.1016/S0309-1740(03)00157-8

    Article  Google Scholar 

  112. Steglich T, Bernin D, Röding M, Nydén M, Moldin A, Topgaard D, Langton M (2014) Microstructure and water distribution of commercial pasta studied by microscopy and 3D magnetic resonance imaging. Food Res Int 62:644–652. doi:10.1016/j.foodres.2014.04.004

    Article  Google Scholar 

  113. Tananuwong K, Reid D (2004) DSC and NMR relaxation studies of starch–water interactions during gelatinization. Carbohydr Polym 58(3):345–358. doi:10.1016/j.carbpol.2004.08.003

    Article  CAS  Google Scholar 

  114. Tao F, Zhang L, McCarthy MJ, Beckles DM, Saltveit M (2014) Magnetic resonance imaging provides spatial resolution of chilling injury in micro-tom tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 97:62–67. doi:10.1016/j.postharvbio.2014.06.005

    Article  Google Scholar 

  115. Thybo AK, Szczypinski PM, Karlsson AH, Donstrup S, Stodkilde-Jorgensen HS, Andersen HJ (2004) Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. J Food Eng 61(1):91–100. doi:10.1016/S0260-8774(03)00190-0

    Article  Google Scholar 

  116. Troutman MY, Mastikhin IV, Balcom BJ, Eads TM, Ziegler GR (2001) Moisture migration in soft-panned confections during engrossing and aging as observed by magnetic resonance imaging. J Food Eng 48(3):257–267. doi:10.1016/S0260-8774(00)00167-9

    Article  Google Scholar 

  117. Tsukakoshi Y, Naito S, Ishida N (2008) Fracture intermittency during a puncture test of cereal snacks and its relation to porous structure. Food Res Int 41(9):909–917. doi:10.1016/j.foodres.2007.11.010

    Article  Google Scholar 

  118. Van As H, van Duynhoven J (2013) MRI of plants and foods. J Magn Reson 229:25–34. doi:10.1016/j.jmr.2012.12.019

    Article  CAS  Google Scholar 

  119. van Duynhoven J, Voda A, Witek M, Van As H (2010) Chapter 3—Time-domain NMR applied to food products. In: Graham AW (ed) Annual reports on NMR spectroscopy, vol 69. Academic Press, New York, pp 145–197

    Google Scholar 

  120. Vanin FM, Lucas T, Trystram G (2009) Crust formation and its role during bread baking. Trends Food Sci Technol 20(8):333–343. doi:10.1016/j.tifs.2009.04.001

    Article  CAS  Google Scholar 

  121. Vereecken J, Foubert I, Smith KW, Sassano GJ, Dewettinck K (2010) Crystallization of model fat blends containing symmetric and asymmetric monounsaturated triacylglycerols. Eur J Lipid Sci Technol 112(2):233–245. doi:10.1002/ejlt.200900037

    Article  CAS  Google Scholar 

  122. Voda A, Homan N, Witek M, Duijster A, van Dalen G, van der Sman R, van Duynhoven J (2012) The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Res Int 49(2):687–693. doi:10.1016/j.foodres.2012.08.019

    Article  CAS  Google Scholar 

  123. Wagner M, Quellec S, Trystram G, Lucas T (2008) MRI evaluation of local expansion in bread crumb during baking. J Cereal Sci 48(1):213–223. doi:10.1016/j.jcs.2007.09.006

    Article  Google Scholar 

  124. Wagner MJ, Loubat M, Sommier A, Le Ray D, Collewet G, Broyart B, Lucas T (2008) MRI study of bread baking: experimental device and MRI signal analysis. Int J Food Sci Technol 43(6):1129–1139. doi:10.1111/j.1365-2621.2007.01633.x

    Article  CAS  Google Scholar 

  125. Wagner MJ, Lucas T, Le Ray D, Trystram G (2007) Water transport in bread during baking. J Food Eng 78(4):1167–1173. doi:10.1016/j.jfoodeng.2005.12.029

    Article  Google Scholar 

  126. Wang YJ, Assaad E, Ispas-Szabo P, Mateescu MA, Zhu XX (2011) NMR imaging of chitosan and carboxymethyl starch tablets: swelling and hydration of the polyelectrolyte complex. Int J Pharm 419(1–2):215–221. doi:10.1016/j.ijpharm.2011.08.008

    Article  CAS  Google Scholar 

  127. Watanabe H, Fukuoka M, Tomiya A, Mihori T (2001) A new non-Fickian diffusion model for water migration in starchy food during cooking. J Food Eng 49(1):1–6. doi:10.1016/S0260-8774(00)00175-8

    Article  Google Scholar 

  128. Węglarz WP, Hemelaar M, van der Linden K, Franciosi N, van Dalen G, Windt C, Van As H (2008) Real-time mapping of moisture migration in cereal based food systems with Aw contrast by means of MRI. Food Chem 106(4):1366–1374. doi:10.1016/j.foodchem.2007.04.077

    Article  CAS  Google Scholar 

  129. Weglarz* WP, Goudappel GJW, van Dalen G, Blonk H, van Duynhoven J (2007) Real-time assessment of the internal porous structure of cereal materials under high-moisture conditions using 3D MRI and XRT. Magn Reson Imaging 25(4):590. doi:10.1016/j.mri.2007.01.145

    Article  Google Scholar 

  130. Whitworth MB, Alava JM (2005) Non-destructive imaging of bread and cake structure during baking. In: Cauvain SP, Salmon SS, Young LS (eds) Using cereal science and technology for the benefit of consumers: proceedings of the 12th international ICC cereal and bread congress, 24–26th May, 2004, Harrogate, UK. Elsevier, Amsterdam, pp 456–460

    Chapter  Google Scholar 

  131. Yahia EM, De Jesus Ornelas-Paz J, Elansari A (2011) 5—Postharvest technologies to maintain the quality of tropical and subtropical fruits. In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing, Cambridge, pp 142–195e

    Chapter  Google Scholar 

  132. Ye X, Ruan R, Chen P, Doona C (2004) Simulation and verification of ohmic heating in static heater using MRI temperature mapping. LWT Food Sci Technol 37(1):49–58. doi:10.1016/s0023-6438(03)00133-6

    Article  CAS  Google Scholar 

  133. Yuan-hui L, Miao-yun L, Gai-ming Z, Qiu-hui Z, Yan-xia L, Xiao-ping G (2013) Effects of freeze-thaw cycle on quality of chicken flesh and bones. J Henan Agric Univ 2:187–191

    Google Scholar 

  134. Zehl M, Braunberger C, Conrad J, Crnogorac M, Krasteva S, Vogler B, Krenn L (2011) Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important Drosera species by LC-DAD, LC-NMR, NMR, and LC-MS. Anal Bioanal Chem 400(8):2565–2576. doi:10.1007/s00216-011-4690-3

    Article  CAS  Google Scholar 

  135. Zhang L, Lucas T, Doursat C, Flick D, Wagner M (2007) Effects of crust constraints on bread expansion and CO2 release. J Food Eng 80(4):1302–1311. doi:10.1016/j.jfoodeng.2006.10.008

    Article  Google Scholar 

  136. Zhang L, McCarthy MJ (2012) Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol Technol 67:96–101. doi:10.1016/j.postharvbio.2011.12.018

    Article  CAS  Google Scholar 

  137. Zhang L, McCarthy MJ (2012) Measurement and evaluation of tomato maturity using magnetic resonance imaging. Postharvest Biol Technol 67:37–43. doi:10.1016/j.postharvbio.2011.12.004

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Bilkent University National Magnetic Center (UMRAM), Ankara, Turkey, for providing the opportunity to use the MRI scanner.

Compliance with ethical standards

In this review, principles of ethical and professional conduct have been followed. This study does not involve research on human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mecit H. Oztop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirtil, E., Oztop, M.H. 1H Nuclear Magnetic Resonance Relaxometry and Magnetic Resonance Imaging and Applications in Food Science and Processing. Food Eng Rev 8, 1–22 (2016). https://doi.org/10.1007/s12393-015-9118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9118-y

Keywords

Navigation