Skip to main content

Advertisement

Log in

Food Safety Engineering: An Emergent Perspective

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

In general, food engineers are trained to solve engineering problems in the food industry. More specifically, the food engineer must specify the functional requirements, design, and testing of food products, and finally, the evaluation of products to check for overall efficiency, cost, reliability, and most importantly, safety. Food safety must be considered foremost as the overall engineering problem encountered in the food supply chain, and it must be solved from a food safety engineering perspective. This article will show that the food safety engineering perspective is needed in order to produce high quality food products (minimally processed) that are both safe and secure. This multi-disciplinary approach will involve certain engineering components: (i) predictive microbiology as a tool to evaluate and improve food safety in traditional and new processing technologies, (ii) advanced food contaminants detection methods, (iii) advanced processing technologies, (iv) advanced systems for re-contamination control, (v) advanced systems for active and intelligent packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adegoke GO, Iwahashi H, Komatsu Y (2006) Inhibition of Saccharomyces cerevisiae by combination of hydrostatic pressure and monoterpenes. J Food Sci 62:404–405

    Google Scholar 

  2. Aguilar-Rosas SF, Ballinas-Casarrubias ML, Nevarez-Moorillon GV, Martin-Belloso O, Ortega-Rivas E (2007) Thermal and pulsed electric fields pasteurization of apple juice: effects on physicochemical properties and flavour compounds. J Food Eng 83:41–46

    CAS  Google Scholar 

  3. Aktug SE, Karapinar M (1986) Sensitivity of some common food-poisoning bacteria to thyme, mint and bay leaves. Int J Food Microbiol 3:349–354

    Google Scholar 

  4. Anonymous (2004) Food safety in relation to novel packaging technologies. Smart Packag J 18:1–18

    Google Scholar 

  5. Arnold JW, Silvers S (2000) Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation. Poultry Sci 79:1215–1221

    CAS  Google Scholar 

  6. Arrow Scientific (2008) Food MicroModel. http://www.arrowscientific.com.au/predictive_micro_sw.html. Accessed 10 Mar 2009

  7. Balasubramaniam VM (2006) Applied Engineering. Food Safety Engineering. Ohio’s Country Journal 14(19):43

    Google Scholar 

  8. Baranyi J, Tamplin M (2004) ComBase: a common database on microbial responses to food environments. J Food Prot 67:1967–1971

    Google Scholar 

  9. Barbosa-Cánovas GV, Pothakamury UR, Palou E, Swanson BG (1998) Nonthermal preservation of foods. Marcel Dekker, NY, USA

    Google Scholar 

  10. Barbosa-Cánovas GV, Góngora-Nieto MM, Pothakamury UR, Swanson BG (1999) Preservation of foods with pulsed electric fields. Academic Press, San Diego, USA

    Google Scholar 

  11. Barron FH (2007) The food engineer. In: Kutz M (ed) Handbook of farm, dairy and food machinery. William Andrew Publishing Inc., NY, USA

    Google Scholar 

  12. Baur B, Hanselmann K, Schlimme W, Jenni B (1996) Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62:3673–3678

    CAS  Google Scholar 

  13. Benjilali B, Tantaoui-Elaraki A, Ayadi A, Ihlal M (1984) Method to study antimicrobial effects of essential oils: Application to the antifungal activity of six Moroccan essences. J Food Prot 47:748–752

    Google Scholar 

  14. Berkenpas E, Millard P, Pereira DC (2006) Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosens Bioelectron 21:2255–2262

    CAS  Google Scholar 

  15. Bevilacqua A, Sinigaglia M, Corbo MR (2008) Alicyclobacillus acidoterrestris: new methods for inhibiting spore germination. Int J Food Microbiol 125:103–110

    CAS  Google Scholar 

  16. Bhunia AK, Banada P, Banerife P, Valadez A, Hirleman ED (2007) Light scattering, fiber optic and cell-based sensors for sensitive detection of foodborne pathogens. J Rapid Methods Autom Microbiol 15:121–145

    Google Scholar 

  17. Briozzo J, Nuñez L, Chirife J, Gerszage L, D’Aquino M (1989) Antimicrobial activity of clove oil dispersed in a concentrated sugar solution. J Appl Bacteriol 66:69–75

    CAS  Google Scholar 

  18. Brody AL (2005) Packaging for nonthermally and minimally processed foods. Food Technol 59(10):75–77

    Google Scholar 

  19. Brody AL, Strupinsky ER, Kline LR (2001) Active packaging for food applications. CRC Press, NY

    Google Scholar 

  20. Bronzetti G (1994) Antimutagens in food. Trends Food Sci Tech 5:390–395

    CAS  Google Scholar 

  21. Brown HM (1991) The use of chemical and biochemical markers in the retrospective examination of thermally processed formulated meats. Technical Memorandum 625. Chipping Campden, UK, Campden & Chorleywood Food Research Association

  22. Brul S, Schuren F, Montijn R, Keijser BJF, van der Speck H, Oomes SJCM (2006) The impact of functional genomics on microbiological food quality and safety. Int J Food Microbiol 112:195–199

    CAS  Google Scholar 

  23. Brul S, Mensonides FIC, Hellingwerf KJ, Teixeira de Mattos MJ (2008) Microbial system biology: new frontiers open to predictive microbiology. Int J Food Microbiol 128:16–21

    Google Scholar 

  24. Burfoot D, Brown K, Xu Y, Reavell SV, Hall K (2000) Localised air delivery systems in food industry. Trends Food Sci Tech 11:410–418

    CAS  Google Scholar 

  25. Burghula T, Khall D, Kim S, Krishnan SS, Cousin MA, Gore JP, Reuhs BI, Mauer IJ (2006) Detection of Escherichia coli O157:H7 and Salmonella typhimurium using filtration followed by Fourier-transform infrared spectroscopy. J Food Protect 68(8):1777–1784

    Google Scholar 

  26. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    CAS  Google Scholar 

  27. Butler P (2001) Smart packaging–intelligent packaging for food, beverages, pharmaceuticals and household products. Mater World 9(3):11–13

    CAS  Google Scholar 

  28. Cane C (2006) Tiny devices to feed advances in food safety and quality. http://cordis.europa.eu/ictresults/index.cfm?section=news&tpl=article&ID=80655

  29. Cava R, Nowak E, Taboada A, Marin-Iniesta F (2007) Antimicrobial activity of clove and cinnamon essential oils against Listeria monocytogenes in pasteurized milk. J Food Protect 71:2757–2763

    Google Scholar 

  30. Cérémonie H, Buret F, Simonet P, Vogel TM (2004) Isolation of lightning-competent soil bacteria. Appl Environ Microbiol 70:6342–6346

    Google Scholar 

  31. Cérémonie H, Buret F, Simonet P, Vogel TM (2006) Natural electrotransformation of lightning-competent Pseudomonas sp. strain N3 in artificial soil microscosms. Appl Environ Microbiol 72:2385–2389

    Google Scholar 

  32. Cerf O (1977) Tailing of survival curves of bacterial spores, a review. J Appl Bacteriol 42:1

    CAS  Google Scholar 

  33. Cerruti P, Alzamora SM (1996) Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purees. Int J Food Microbiol 29:379–386

    Google Scholar 

  34. CFSE Center for Food Safety Engineering (2007) http://www.cfse.purdue.edu. Accessed 15 Jan 2009

  35. Chang KS, Chang CK, Chen CY (2007) A surface acoustic wave sensor modified from a wireless transmitter for the monitoring of the growth of bacteria. Sens Actuators B Chem 125:207–213

    Google Scholar 

  36. Chao CC, Yang JM, Jen WJ (2007) Determining technology trends and forecasts of RFID by a historical review and bibliometric analysis from 1991 to 2005. Technovation 27:268–279

    Google Scholar 

  37. Chau CF, Wu SH, Yen GH (2007) The development of regulations for food nanotechnology. Trends Food Sci Tech 18:269–280

    CAS  Google Scholar 

  38. Chouliara E, Karatapanis A, Savvaidis IN, Kontominas MG (2007) Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 ºC. Food Microbiol 24:607–617

    CAS  Google Scholar 

  39. Clark JP (2006) High pressure processing research continues. Food Technol 60(2):63–65

    Google Scholar 

  40. Clarke RH, Twede D, Tazelaar JR, Boyer KK (2006) Radio Frequency Identification (RFID) performance: the effect of tag orientation and package contents. Package Technol Sci 19:45–54

    Google Scholar 

  41. Commission Decision (1999) Official J European Communities 84:1–137

    Google Scholar 

  42. Commission Decision (2002) Official J European Communities 49:1–160

    Google Scholar 

  43. Conner DE, Beuchat LR (1984) Effects of essential oils from plants on growth of food spoilage yeasts. J Food Sci 49:429–434

    Google Scholar 

  44. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Sci Emerging Technol 9:85–91

    CAS  Google Scholar 

  45. Cunha LM, Oliveira FAR, Oliveira JC (1998) Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. J Food Eng 37:175

    Google Scholar 

  46. Dainelli D, Gontard N, Spyropoulosc D, Zondervan-van den Beukend E, Tobback P (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112

    Google Scholar 

  47. Davidson PM, Harrison MA (2002) Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol 56(11):69–78

    Google Scholar 

  48. Davidson PM, Naidu AS (2000) Phyto-phenols. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton, USA

    Google Scholar 

  49. Davidson PM, Parish ME (1989) Methods for testing the efficacy of food antimicrobials. Food Technol 43:148–155

    CAS  Google Scholar 

  50. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91

    CAS  Google Scholar 

  51. Day BPF (2003) Active packaging. In: Coles R, McDowell D, Kirwan M (eds) Food packaging technologies. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  52. Day BPF (2008) Active packaging of food. In: Kerry J, Butler P (eds) Smart packaging technologies. John Wiley and Sons Ltd, West Sussex, England

    Google Scholar 

  53. De Cordt S, Hendrickx M, Maesmans G, Tobback P (1992) Immobilized α-amylase from Bacillus licheniformis: a potential enzymic time—temperature integrator for thermal processing. J Food Sci Technol 27:661–673

    Google Scholar 

  54. De Lara J, Fernández PS, Periago PM, Palop A (2002) Irradiation of spores of Bacillus cereus and Bacillus subtilis with electron beams. Innovative Food Sci Emerging Technol 3:379–384

    Google Scholar 

  55. Delgado B, Palop A, Fernández PS, Periago PM (2004) Effect of thymol and cymene to establish safe conditions related to Bacillus cereus vegetative cells through the use of frequency distributions. Food Microbiol 21:327–334

    CAS  Google Scholar 

  56. Delgado B, Palop A, Fernández PS, Periago PM (2004) Combined effect of thymol and cymene to control the growth of Bacillus cereus vegetative cells. Eur Food Res Technol 218(2):188–193

    CAS  Google Scholar 

  57. Delgado B, Periago PM, Conesa R, Palop A, Fernández PS (2005) Use of frequency distribution functions to establish safe conditions in relation to the foodborne pathogen Bacillus cereus. Food Technol Biotechnol 43:195–200

    Google Scholar 

  58. EHEDG (1992) A method for assessing the in-place cleanability of food processing equipment. Trends Food Sci Technol 3:325–328

    Google Scholar 

  59. EHEDG (2003) Hygienic engineering of plants for the processing of dry particulate materials. CCFRA Technology Ltd, Chipping Campden, UK

    Google Scholar 

  60. ElAmin A (2006) UK Foodborne disease cases fall by 19 per cent. http://www.foodproductiondaily.com/Quality-Safety/UK-foodborne-disease-cases-fall-by-19-per-cent. Accessed 10 Oct 2006

  61. Elez-Martínez P, Martín-Belloso O (2005) Food safety aspects of pulsed electric fields. In: Sun DW (ed) Emerging technologies for food processing. Academic Press, Boston, USA

    Google Scholar 

  62. ERS (2004) Foodborne illness cost calculator, Economic Research Service, USDA. www.ers.usda.gov

  63. Escriche I, Domenech E, Baert K (2006) Design and implementation of an HACCP system. In: Luning PA, Devlieghere F, Verhe R (eds) Safety in the agri-food chain. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  64. Esty JR, Meyer KF (1922) The heat resistance of spores of B. botulinus and allied anaerobes. J Infect Dis 31:650

    Google Scholar 

  65. Favetto GC, Chiriffe J, Scorza OC, Hermida CA (1989) Time-temperature integrating indicator for monitoring the cooking process of packaged meats in the temperature range of 85–100 degrees Celsius. U.S. Patent 4,834,017

    Google Scholar 

  66. FDA/CFSAN (2000) Kinetics of microbial inactivation for alternative food processing technologies: pulsed electric fields. Center for Food Safety and Applied Nutrition, www.cfsan.fda.gov/~comm/ift-pef.html. Accessed 2 June 2000

  67. FDA/CFSAN (2000) Kinetics of microbial inactivation for alternative food processing technologies: pulsed light technology. Center for Food Safety and Applied Nutrition, www.cfsan.fda.gov/~comm/ift-puls.html. Accessed 2 June 2000

  68. Fernandez A, Salmeron C, Fernández PS, Martinez A (1999) Application of a frequency distribution model to describe the thermal inactivation of two strains of Bacillus cereus. Trends Food Sci Technol 10:158

    CAS  Google Scholar 

  69. Fitzgerald DJ, Stratford M, Gasson MJ, Narbad A (2004) The potential application of vanillin in preventing yeast spoilage of ready-to-drink beverages. J Food Protect 67:391–395

    CAS  Google Scholar 

  70. Friedman M, Kozuekue N, Harden LA (2000) Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J Agric Food Chem 48:5702–5709

    CAS  Google Scholar 

  71. Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes and Salmonella enterica. J Food Protect 65:1545–1560

    CAS  Google Scholar 

  72. Friis A, Jensen BBB (2002) Prediction of hygiene in food processing equipment using flow modelling. Food Bioprod Process 80:281–285

    Google Scholar 

  73. FSA (2008) Annual report of the chief scientist 2007/08. Food Standard Agency, UK

    Google Scholar 

  74. FSIS (Food Safety, Inspection Service) (2003) Control of Listeria monocytogenes in ready-to-eat meat and poultry products; Final Rule. Fed Regist 68:34208–34254

    Google Scholar 

  75. Gaysinsky S, Davidson PM, McClements DJ, Weiss J (2008) Formulation and characterization of phytophenol-carrying antimicrobial microemulsions. Food Biophysics 3:54–65

    Google Scholar 

  76. Gerner-Smidt P, Whichard JM (2007) Foodborne disease trends and reports. Foodborne Pathogens Dis 4:1–3

    Google Scholar 

  77. Gill AO, Delaquis P, Russo P, Holley RA (2002) Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int J Food Microbiol 73:83–92

    CAS  Google Scholar 

  78. Gottlieb SL, Newbern EC, Griffin PM, Graves LM, Hoekstra RM, Baker NL, Hunter SB, Holt KG, Ramsey F, Head M, Levine P, Johnson G, Schoonmaker-Bopp D, Reddy V, Kornstein L, Gerwel M, Nsubuga J, Edwards L, Stonecipher S, Hurd S, Austin D, Jefferson MA, Young SD, Hise K, Chernak ED, Sobel J (2006) Multistate outbreak of listeriosis linked to Turkey deli meat and subsequent changes in US regulatory policy. Clin Infect Dis 42:29–36

    Google Scholar 

  79. Gould GW (2001) New processing technologies: an overview. Proc Nutr Soc 60:463–474

    CAS  Google Scholar 

  80. Grolichova M, Dvorak P, Musilova H (2004) Employing radiation to enhance food safety- A review. Acta Vet BRNO 73(1):143–149

    Google Scholar 

  81. Hassani M, Condón S, Pagán R (2007) Predicting microbial heat inactivation under non-isothermal treatments. J Food Protect 70:1457–1467

    Google Scholar 

  82. Hauser G, Michael R, Sommer K (1989) The design and construction of food processing equipment with particular regard to hygiene. In: Field RW, Howell JA (eds) Process engineering in the food industry. Elsevier Science Publisher, Essex, UK

    Google Scholar 

  83. Heisey RM, Gorham BK (1992) Antimicrobial effects of plant extracts on Streptococcus mutans, Candida albicans, Trichophyton rubrum and other microorganims. Lett Appl Microbiol 14:136–139

    Google Scholar 

  84. Heldman DR, Newsome RL (2003) Kinetic models for microbial survival during processing. Food Technol 57:40–46

    Google Scholar 

  85. Hendrickx M, Silva C, Oliverira F, Tobback P (1992) Optimization of heat transfer in thermal processing of conduction heated foods. In: Singh RP, Wirakartakusumah MA (eds) Advances in Food Engineering. CRC Press, London, UK

    Google Scholar 

  86. Hielscher (2006) Ultrasound in the food industry. http://www.hielscher.com/ultrasonics/food_01.htm

  87. Holah J (2000) Food processing equipment design and cleanability, flair-flow Europe Technical Manual F-FE 377A/00. Teagasc, The National Food Centre, Dublin, Ireland

  88. Holley RA, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22:273–292

    CAS  Google Scholar 

  89. Hoorfar J, Cook N (2003) Critical aspects in standardization of PCR. In: Sachse K, Frey J (eds) Methods in molecular biology: PCR detection of microbial pathogens. Humana Press, Totowa

    Google Scholar 

  90. ILSI (International Life Sciences Institute) Research Foundation/Risk Science Institute (2005) Achieving continuous improvement in reductions in foodborne listeriosis—a risk-based approach. J Food Protect 68:1932–1994

    Google Scholar 

  91. Ismaiel AA, Pierson MD (1990) Effect of sodium nitrite and oregano oil on growth and toxin production of Clostridium botulinum in TYG broth and ground pork. J Food Protect 53:958–960

    CAS  Google Scholar 

  92. Jensen BBB (2007) Training. A prerequisite in hygienic food processing. Trends Food Sci Technol 18:S101–S106

    CAS  Google Scholar 

  93. Jevsnik M, Hlebec V, Raspor P (2008) Consumers’ awareness of food safety from shopping to eating. Food Control 19:737–745

    Google Scholar 

  94. Juven BJ, Kanner J, Schved F, Weisslowicz H (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76:626–631

    CAS  Google Scholar 

  95. Karatzas AK, Bennik MHJ, Smid EJ, Kets EPW (2000) Combined action of S-carvone and mild heat treatment on Listeria monocytogenes Scott A. J Appl Microbiol 89:296–301

    CAS  Google Scholar 

  96. Karatzas AK, Kets EPW, Smid EJ, Bennik MHJ (2001) The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. J Appl Microbiol 90:463–469

    CAS  Google Scholar 

  97. Kerry J, Butler P (eds) (2008) Smart packaging technologies. John Wiley and Sons, Ltd, West Sussex, England

    Google Scholar 

  98. Kerry JP, O´Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74:113–130

    Google Scholar 

  99. Kharazmi M, Bauer T, Hammes WP, Hertel C (2003) Effect of food processing on the fate of DNA with regard to degradation and transformation capability in Bacillus subtilis. Syst Appl Microbiol 26:495–501

    CAS  Google Scholar 

  100. Kish S (2008) Nanotechnology improves food safety by detecting prions. Cooperative state research, education, and extension service, USDA, USA. http://www.csrees.usda.gov/newsroom/impact/2008/nri/10091_prions.html

  101. Ko S, Grant SA (2006) A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens Bioelectron 21(7):1283–1290

    CAS  Google Scholar 

  102. Korel F, Ergönül B, Gökgöz E (2003) Economic impacts of HACCP system applications in food industry. Food 2003(1):80–82

    Google Scholar 

  103. Kowalcyk B (2004) The economic and emotional burden of foodborne disease. Presented to the U.S. House of Representatives’ Food Safety Caucus. Washington, DC. http://www.safetables.org/communications/newsletters/2004%20Fall.pdf. Accessed 15 Jan 2009

  104. Lado B, Yousef A (2002) Alternative food preservation technologies: efficacy and mechanisms. Microbes Infect 4:433–440

    Google Scholar 

  105. Lebert I, Lebert A (2006) Quantitative prediction of microbial behaviour during food processing using an integrated modelling approach: a review. Int J Refrig 29:968–984

    Google Scholar 

  106. Lelieveld HLM, Mosters MA, Curiel GJ (2003) Hygienic equipment design. In: Lelieveld HLM, Mostert MA, Holah J, White B (eds) Hygiene in food processing. Woodhead Publishing Ltd, Cambridge, UK

    Google Scholar 

  107. Lin M, Al-Holy M, Chang SS, Huang Y, Cavinato AG, Kang DH, Rasco BA (2005) Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. Int J Food Microbiol 105(3):369–376

    CAS  Google Scholar 

  108. López-Gómez A, Barbosa-Cánovas GV (2005) Food Plant Design CRC Press. NY, USA

    Google Scholar 

  109. LoPrinzi S (2008) Beverage active, controlled and intelligent packaging for foods and beverages, http://www.bccresearch.com/report/FODO388.html. Accesed Jan 2008

  110. Mafart P, Couvert O, Gaillard S, Leguerinel I (2002) On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int J Food Microbiol 72:107

    CAS  Google Scholar 

  111. Mahmoud BSM, Vaidya NA, Corvalan CM, Linton RH (2008) Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona on whole cantaloupe by chlorine dioxide gas. Food Microbiol 25:857–865

    CAS  Google Scholar 

  112. Mañas P, Pagán R (2005) Microbial inactivation by new technologies of food preservation. J Appl Microbiol 98:1387–1399

    Google Scholar 

  113. Marco ML, Wells-Bennik MHJ (2008) Impact of bacterial genomics on determining quality and safety in the dairy production chain. Int Dairy J 18:486–495

    CAS  Google Scholar 

  114. Marcos B, Aymerich T, Garriga M (2005) Evaluation of high pressure processing as an additional hurdle to control Listeria monocytogenes and Salmonella enterica in low-acid fermented sausages. J Food Sci 70(7):339–344

    Google Scholar 

  115. Marks B (2001) Engineering applications for food safety. Agr Eng Newsletter, Jan/Feb, Agric Eng Dpt, Michigan State University

  116. Martínez A, Rodrigo D, Fernández PS, Ocio MJ (2006) Time-temperature integrators for thermal process evaluation. In: Sun DW (ed) Thermal food processing. CRC Press, Boca Raton, USA

    Google Scholar 

  117. McKillip JL, Drake M (2004) Real-time nucleic acedi-based detection methods for pathogenic bacteria in food. J Food Protect 67:823–832

    CAS  Google Scholar 

  118. McKillip JL, Jaykus LA, Drake M (1998) rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7. Appl Environ Microbiol 64:4264–4268

    CAS  Google Scholar 

  119. McKillip JL, Jaykus LA, Drake M (2000) A comparison of methods for the detection of Escherichia coli O157:H7 from artificially-contaminated dairy products using PCR. J Appl Microbiol 89:49–55

    CAS  Google Scholar 

  120. McMahon MAS, Blair IS, Moore JE, McDowell DA (2007) The rate of horizontal transmission of antibiotic resistance plasmids is increased in food preservation-stressed bacteria. J Appl Microbiol 103(5):1883–1888

    CAS  Google Scholar 

  121. McManus MC (1997) Mechanisms of bacterial resistance to antimicrobial agents. Am J Health-Syst Pharm 54:1420–1433

    CAS  Google Scholar 

  122. McMeekin TA, Ross T (1996) Modeling applications. J Food Protect 37–42 (Supplement)

  123. McMeekin TA, Bowman J, McQuestin O, Mellefont L, Ross T, Tamplin M (2008) The future of predictive microbiology: strategic research, innovative applications and great expectations. Int J Food Microbiol 128:2

    Google Scholar 

  124. Mejlholm O, Dalgaard P (2002) Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products. Lett Appl Microbiol 34:27–31

    CAS  Google Scholar 

  125. Membré JM, Lambert RJW (2008) Application of predictive modelling techniques in industry: from food design up to risk assessment. Int J Food Microbiol 128:10

    Google Scholar 

  126. Mendoza-Yepes MJ, Sanchez-Hidalgo LE, Gwendolyn M, Marin-Iniesta F (1997) Inhibition of Listeria monocytogenes and other bacteria by a plant essential oil (DMC) in Spanish soft-cheese. J Food Safety 17:47–55

    CAS  Google Scholar 

  127. Mohácsi-Farkas CS, Kiskó G, Mészáros L, Farkas I (2002) Pasteurisation of tomato juice by high hydrostatic pressure treatment or by its combination with essential oils. Acta Alimentaria 31:243–252

    Google Scholar 

  128. Möller N, Hansson SO (2008) Principles of engineering safety: risk and uncertainty reduction. Reliab Eng Syst Safe 93:776–783

    Google Scholar 

  129. Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    CAS  Google Scholar 

  130. Moraru CI (2007) National needs fellowship program. Graduate training program in food safety engineering. Cornell University, Department of Food Science

  131. Morris C, Brody AL, Wickler L (2007) Non-thermal food processing/preservation technologies: a review with packaging implications. Package Technol Sci 20:275–286

    CAS  Google Scholar 

  132. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Nonthermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Sci Emerging Technol 9:328–340

    CAS  Google Scholar 

  133. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Inactivation of Salmonella enterica ser. enteritidis in tomato juice by combining of high-intensity pulsed electric fields with natural antimicrobials. J Food Sci 73:M47–M53

    CAS  Google Scholar 

  134. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiol 25:479–490

    CAS  Google Scholar 

  135. Mosqueda-Melgar J, Elez-Martínez P, Raybaundi-Massilia RM, Martín-Belloso O (2008) Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Crit Rev Food Sci Nutr 48(8):747–759

    Google Scholar 

  136. Mourey A, Canillac N (2002) Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13:289–292

    CAS  Google Scholar 

  137. Murphy A, Millar N, Cuney S (2003) Active and intelligent packaging. The kitchen of the future. Presentation to innovation day, Cambridge Consultants Ltd. www.CambridgeConsultants.com. Accessed 4 Nov 2003

  138. Neu H, Gootz TD (1996) Antimicrobial chemotherapy. In: Baron S, Schuenke S (eds) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, Galveston, TX, USA

    Google Scholar 

  139. NFPA (2001) Food security manual, for processors, distributors and retailers. National Food Processors Association, USA

    Google Scholar 

  140. Ngai EWT, Moon KKL, Riggins FJ, Yi CY (2008) Development of an RFID-based sushi management system: the case of a conveyor-belt sushi restaurant. Int J Prod Econ 112:510–520

    Google Scholar 

  141. Ohlsson T, Bengtsson N (2002) Minimal processing technologies in the food industry. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  142. Pandit VA, Shelef LA (1994) Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiol 11:57–63

    Google Scholar 

  143. Paster N, Juven BJ, Shaaya E, Menasherov M, Nitzan R, Weisslowicz H, Ravid U (1990) Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria. Lett Appl Microbiol 11:33–37

    Google Scholar 

  144. Peleg M, Cole MB (1998) Reinterpretation of microbial survival curves. Crit Rev Food Sci 38:353–380

    CAS  Google Scholar 

  145. Pérez-Conesa D, McLandsborough L, Weiss J (2006) Inhibition and Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J Food Protect 69:2947–2954

    Google Scholar 

  146. Periago PM, Palop A, Fernández PS (2001) Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells. Food Sci Technol Int 7(6):487–492

    CAS  Google Scholar 

  147. Periago PM, Palop A, Martinez A, Fernández PS (2002) Exploring new mathematical approaches to microbiological food safety evaluation: an approach to more efficient risk assessment implementation. Dairy Food Environ Sanitation 22:18–23

    Google Scholar 

  148. Periago PM, Delgado B, Fernández PS, Palop A (2004) Use of carvacrol and cymene to control growth and viability of Listeria monocytogenes cells and predictions of survivors using frequency distribution functions. J Food Protect 67:1408–1416

    CAS  Google Scholar 

  149. Periago PM, Conesa R, Delgado B, Fernández PS, Palop A (2006) Bacillus megaterium spore germination and growth inhibition by a treatment combining heat with natural antimicrobials. Food Technol Biotechnol 44(1):17–23

    CAS  Google Scholar 

  150. Pflug IJ, Odlaug TE (1986) Biological indicators in the pharmaceutical and medical industry. J Parenteral Sci Technol 40:242–248

    CAS  Google Scholar 

  151. Pol EI, Mastwijk HC, Bartels PV, Smid JE (2000) Pulsed-electric field treatment enhances the bactericidal action of Nisin against Bacillus cereus. Appl Environ Microbiol 66:428–430

    Article  CAS  Google Scholar 

  152. PSU (2008) Food Safety Engineering Course. Pennsylvania State University. http://bulletins.psu.edu/bulletins/

  153. Ramaswamy R, Ahn J, Balasubramaniam VM, Rodríguez-Saona L, Yousef AE (2007) Food safety engineering. In: Kutz M (ed) Handbook of farm, dairy and food machinery. William Andrew Publishing Inc., NY, USA

    Google Scholar 

  154. Raso J, Barbosa-Cánovas GV (2003) Non-thermal preservation of foods using combined processing techniques. Crit Rev Food Sci Nutr 43(3):265–285

    Google Scholar 

  155. Raso J, Palop A, Pagán R, Condón S (1998) Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J Appl Microbiol 85:849–854

    CAS  Google Scholar 

  156. Raspor P (2008) Total food chain safety: how good practices can contribute? Trends Food Sci Technol 19:405–412

    CAS  Google Scholar 

  157. Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:69–112

    CAS  Google Scholar 

  158. Redmond EC, Griffith CJ (2003) Consumer food handling in the home: a review of food safety studies. J Food Protect 66(1):130–161

    Google Scholar 

  159. Regattieri A, Gamberi M, Manzini R (2007) Traceability of food products: General framework and experimental evidence. J Food Eng 81:347–356

    Google Scholar 

  160. EU Regulation (1997) Regulation (EC) No 258/97. Official J Eur Communities 43:1–7

  161. Reisner A, Höller BM, Molein S, Zechner EL (2006) Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J Bacteriol 188:3582–3588

    CAS  Google Scholar 

  162. Robertson GL (ed) (2006) Food packaging—principles and practice, 2nd edn. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  163. Rodrigo D, Zuñiga M, Rivas A, Martínez A, Notermans S (2007) Microbiological aspects: adaptation potential. In: Lelieveld HLM, Notermans S, De Haan SWH (eds) Food preservation by pulsed electric fields: from research to application. Woodhead Publishing Ltd, Cambridge, UK

    Google Scholar 

  164. Rodrıguez A, Batlle R, Nerón C (2007) The use of natural essential oils as antimicrobial solutions in paper packaging, Part II. Prog Org Coat 60:33–38

    Google Scholar 

  165. Rodríguez-Lázaro D, Lombard B, Smith H, Rzezutka A, D’Agostino M, Helmuth R, Schroeter A, Malorny B, Miko A, Guerra B, Davison J, Kobilinsky A, Hernández M, Bertheau Y, Cook N (2007) Trends in analytical methodology in food safety and quality; monitoring microorganisms and genetically modified organisms. Trends Food Sci Technol 18:306–319

    Google Scholar 

  166. Ros-Chumillas M, Egea-Cortines M, López-Gómez A, Weiss J (2007) Evaluation of a rapid DNA extraction method to detect yeast cells by PCR in orange juice. Food Control 18(1):33–39

    CAS  Google Scholar 

  167. Ros-Chumillas M, Belisario Y, Iguaz A, López-Gómez A (2007) Quality and shelf life of orange juice aseptically packaged in PET bottles. J Food Eng 79(1):234–242

    CAS  Google Scholar 

  168. Ross T (1996) Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol 81:501

    CAS  Google Scholar 

  169. Sampedro F, Rodrigo M, Martinez A, Rodrigo D, Barbosa-Cánovas GV (2005) Quality and safety aspects of PEF application in milk and milk products. Crit Rev Food Sci Nutr 45(1):25–47

    CAS  Google Scholar 

  170. Sampedro F, Rodrigo D, Martinez A, Barbosa-Cánovas GV, Rodrigo M (2006) Review: application of pulsed electric fields in egg and egg derivates. Food Sci Technol Int 12(5):397–405

    CAS  Google Scholar 

  171. Serrano M, Martinez-Romero D, Guillen F, Valverde JM, Zapata PJ, Castillo S, Valero D (2008) The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends Food Sci Technol 19:464–471

    CAS  Google Scholar 

  172. Shelef LA (1983) Antimicrobial effects of spices. J Food Safety 6:29–44

    Google Scholar 

  173. Skandamis PN, Nychas GJE (2001) Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. J Appl Microbiol 91:1011–1022

    CAS  Google Scholar 

  174. Smid EJ, Gorris LGM (1999) Natural antimicrobials for food preservation. In: Rahman MS (ed) Handbook of food preservation. Marcel Dekker, New York, USA

    Google Scholar 

  175. Smith-Palmer A, Stewart J, Fyfe L (2001) The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol 18:463–470

    CAS  Google Scholar 

  176. Sofos JN (2008) Challenges to meat safety in the 21st century. Meat Sci 78:3–13

    Google Scholar 

  177. Stecchini ML, Sarais I, Giavedoni P (1993) Effect of essential oils on Aeromonas hydrophila in a culture medium and in cooked pork. J Food Protect 56:406–409

    Google Scholar 

  178. Straub JA, Hertel C, Hammes WP (1999) A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. J Food Proteins 62:1150–1156

    CAS  Google Scholar 

  179. Swartzel KR, Ganesan SG, Kuehn RT, Hamaker RW, Sadeghi F (1991) Thermal memory cell and thermal system evaluation. US Patent 5,921,981

  180. Tassou C, Drosinos EH, Nychas GJE (1995) Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4ºC and 10ºC. J Appl Bacteriol 78:593–600

    CAS  Google Scholar 

  181. The ComBase Consortium (2008) ComBase. http://www.combase.cc. Accessed 14 Oct 2008

  182. Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22(4):405–423

    CAS  Google Scholar 

  183. Tompkin RB (2002) Control of Listeria monocytogenes in the food-processing environment. J Food Protect 65:709–725

    CAS  Google Scholar 

  184. Trienekens J, Zuurbier P (2008) Quality and safety standards in the food industry, developments and challenges. Int J Prod Econ 113:107–122

    Google Scholar 

  185. Tsigarida E, Skandamis P, Nychas GJE (2000) Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 ºC. J Appl Microbiol 89:901–909

    CAS  Google Scholar 

  186. Uhl JR, Bell CA, Sloan LM, Espy MJ, Smith TF, Rosenblatt JE, Cockerill FR (2002) Application of rapid-cycle real-time polymerase chain reaction for the detection of microbial pathogens: the Mayo-Roche rapid anthrax test. Mayo Clin Proc 77:673–680

    CAS  Google Scholar 

  187. USDA-ARS (2008) Pathogen modeling program. USDA Agriculture Research Service. http://ars.usda.gov/services/docs.htm?docid=6786. Accessed 10 Mar 2009

  188. Valero JM, Valverde D, Martinez-Romero D, Guillen F, Castillo S, Serrano M (2006) The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety and functional properties of tables grapes. Postharvest Biol Tech 41:317–327

    CAS  Google Scholar 

  189. Van Boekel MAJS (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:139

    Google Scholar 

  190. Van den Eede G, Aarts A, Buhk HJ, Corthier G, Flint HJ, Hammes J, Jacobsen B, Midtvedt T, van der Vossen J, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 42:1127–1156

    Google Scholar 

  191. Van Donk DP, Gaalman G (2004) Food safety and hygiene. Systematic layout planning of food processes. Chem Eng Res Des 82(A11):1485–1493

    Google Scholar 

  192. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasounds assisted extraction in the food industry—a review. Innovative Food Sci Emerging Technol 9:161–169

    CAS  Google Scholar 

  193. Virto R, Sanz D, Álvarez I, Condón S, Raso J (2005) Comparison of the chlorine inactivation of Yersinia enterocolitica in chlorine demand and chlorine demand-free systems. J Food Protect 68:1816–1822

    CAS  Google Scholar 

  194. Weiss J, Ros-Chumillas M, Pena L, Egea-Cortines M (2007) Effect of storage and processing on plasmid, yeast and plant genomic DNA stability in juice from genetically modified oranges. J Biotechnol 128:194–203

    CAS  Google Scholar 

  195. Wendakoon CN, Sakaguchi M (1993) Combined effect of sodium chloride and clove on growth and biogenic amine formation of Enterobacter aerogenes in mackerel muscle extract. J Food Protect 56:410–413

    CAS  Google Scholar 

  196. Whiting RC (1995) Microbial modeling in foods. Crit Rev Food Sci Nutr 35:467–494

    Article  Google Scholar 

  197. WHO (2002) Food safety and foodborne illness. World Health Organization Fact sheet 237, revised January 2002, Geneva

  198. WHO (2002) World health report 2002: reducing risks, promoting healthy life. World Health Organization, Geneva

  199. Witonsky RJ (1977) A new tool for the validation of the sterilization of parenterals. Bull Parenter Drug Assoc 11:274–281

    Google Scholar 

  200. Wong AC (1998) Biofilms in food processing environments. J Dairy Sci 81:2765–2770

    Article  CAS  Google Scholar 

  201. Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concept and applications. J Food Sci 70(1):1–10

    Article  Google Scholar 

  202. Zenz KI, Neve H, Geis A, Heller KJ (1998) Bacillus subtilis develops competence for uptake of plasmid DNA when growing in milk products. Syst Appl Microbiol 21:28–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. López-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Gómez, A., Fernández, P.S., Palop, A. et al. Food Safety Engineering: An Emergent Perspective. Food Eng. Rev. 1, 84–104 (2009). https://doi.org/10.1007/s12393-009-9005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-009-9005-5

Keywords

Navigation