Skip to main content

Advertisement

Log in

Plant metabolomics for plant chemical responses to belowground community change by climate change

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

General circulation models on global climate change predict increase in surface air temperature and changes in precipitation. Increases in air temperature (thus soil temperature) and altered precipitation are known to affect the species composition and function of soil microbial communities. Plant roots interact with diverse soil organisms such as bacteria, protozoa, fungi, nematodes, annelids and insects. Soil organisms show diverse interactions with plants (eg. competition, mutualism and parasitism) that may alter plant metabolism. Besides plant roots, various soil microbes such as bacteria and fungi can produce volatile organic compounds (VOCs), which can serve as infochemicals among soil organisms and plant roots. While the effects of climate change are likely to alter both soil communities and plant metabolism, it is equally probable that these changes will have cascading consequnces for grazers and subsequent food web components aboveground. Advances in plant metabolomics have made it possibile to track changes in plant metabolomes as they respond to biotic and abiotic environmental changes. Recent developments in analytical instrumentation and bioinformatics software have established metabolomics as an important research tool for studying ecological interactions between plants and other organisms. In this review, we will first summarize recent progress in plant metabolomics methodology and subsequently review recent studies of interactions between plants and soil organisms in relation to climate change issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A’Bear AD, Johnson SN, Jones TH (2013) Putting the ‘upstairsdownstairs’ into ecosystem service: What can abovegroundbelowground ecology tell us? Biol Control, in press

    Google Scholar 

  • Abrankó L, García-Reyes JF, Moilin-Díaz A (2010) In-source fragmentaion and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-of flight mass spectrometry. J Mass Spectrom 46:478–488

    Google Scholar 

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14:2898–2909

    Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Google Scholar 

  • Andrén O, Lindberg T, Boström U, Clarholm M, Hansson A-C, Johansson G, Lagerlöf J, Paustian K, Persson J, Pettersson R, Schnürer, J, Sohlenius B, Wivstad M (1990) Organic carbon and nitrogen flows. Ecol Bull 40:85–126

    Google Scholar 

  • Arctic Climate Impact Assessment (2004) Impacts of a Warming Arctic-Arctic Climate Impact Assessment, Cambridge University Press, Cambridge

    Google Scholar 

  • Asensio D, Owen SM, Llusià J, Peñuelas J (2008) The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees. Soil Biol Biochem 40:2937–2947

    CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Dekker, New York

    Google Scholar 

  • Badri DV, Weir TL, Van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of exudates in rhizosphere interactions with Plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Bell A, Collins N, Ells C, de Romily G, Rossiter A, Young R (2002) Evaluation of the ClimAdapt Guide to incorporating climate change into the environmental impact assessment process. Research and Development Monograph Series, ClimAdpat-Nova Scotia’s Climate Change Adaptation Initiative, Canada

    Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma Proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468.

    CAS  PubMed  Google Scholar 

  • Bennet AE, Beaver JD, Bower MD (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160:711–719

    Google Scholar 

  • Bent, E (2006) Induced systemic resistence mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In S Tuzun, E Bent, eds, Multigenic and Induced Systemic Resistence in Plants. Springer, pp 225–258

    Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    PubMed  Google Scholar 

  • Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565

    PubMed  Google Scholar 

  • Boccard J, Veuthey J-L, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33:290–304

    CAS  PubMed  Google Scholar 

  • Bonello P, Storer AJ, Gordon TR, Wood DL, Heller W (2003) Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem, and potential effects on bark-beetle-associated fungi. J Chem Ecol 29:1167–1182

    CAS  PubMed  Google Scholar 

  • Boswell PG, Carr PW, Cohen JD, Hegeman AD (2012) Easy and accurate calculation of programed temperature gas chromatographic retention times by back-calculation of temperature and hold-up time profiles. J Chromatogr A 1263:179–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boswell PG, Schellenberg JR, Car PW, Cohen JD, Hegeman AD (2011) A study on retention “projection” as a supplementary means for compound identification by liquid chromatographymass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. J Chromatogr A 1218:6732–6741

    CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    CAS  PubMed Central  Google Scholar 

  • Brussaard L, Behan-Pelletier VM, Bignell DE, Brown VK, Didden W, Folgarait P, Fragoso C, Freckman DW, Gupta VVSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Söderström B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystems functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Castillo S, Gopalacharyulu P, Yetukuri L, Orešiè M (2011) Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemom Intell Lab Syst 108:23–32

    CAS  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Christopher WS (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 12:289–325

    Google Scholar 

  • Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause sructural deformations in pathogenic fungi in vitro. Microbiolgical Res 160:75–81

    CAS  Google Scholar 

  • Clasquin MF, Melamud E, Rabinowitz JD (2012) LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr Protoc Bioinformatics 14.11.1–14.11.23

    Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  PubMed  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    CAS  Google Scholar 

  • Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26:162–164

    CAS  PubMed  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods Analyst 131:24–32

    Google Scholar 

  • De Ruiter, PC, Neutel A-M, Moore, J (2005) The balance between productivity and food web structure in soil ecosystems. In RD Bardgett, MB Usher, DW Hopkins, eds, Biological Diversity and Function in Soils. Cambridge University Press

    Google Scholar 

  • Dicke M, Gols R, Poelman EH (2012) Dynamics of plant secondary metabolites and consequences for food chains and community dynamics. In RI Glenn, M Dicke, SE Hartley, eds, The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, pp 308–328

    Google Scholar 

  • Du X, Zeisel SH (2013) Spectral deconvolution for gas chromatography mass spectrometry based metabolomics: current status and future perspectives. Comput Struct Biotechnol J 4:e201301013

    PubMed Central  PubMed  Google Scholar 

  • Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant-pathogen interaction. Plant Pathol 60:54–69

    Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    CAS  PubMed  Google Scholar 

  • Enot DP, Lin W, Beck M, Parker D, Overy DP, Draper J (2008) Preprocessing, classification modeling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nat Protoc 3:446–470.

    CAS  PubMed  Google Scholar 

  • Farag MA, Ryu C-M, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268.

    CAS  PubMed  Google Scholar 

  • Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka Joachim, Carroll AJ, Saito K, Fraser PD, DeLuca V (2011) Recommendations for reporting metabolite data. Plant Cell 23:2377–2482

    Google Scholar 

  • Fiehn O (2007) Validated high quality automated metabolome analysis of Arabidopsis thaliana leaf disks. In BJ Nikolau, ES Wurtele, eds, Concepts in Plant Metabolomics, Springer, Dordrecht, pp 1–18

    Google Scholar 

  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and application of metal-organic frameworks. Science 341:1230444

    PubMed  Google Scholar 

  • Gange, AC, Eschen, R. Schroeder, V (2012) The soil microbial community and plant foliar defenses against insects. In RI Glenn, M Dicke, SE Hartley, eds, The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, pp 170–189

    Google Scholar 

  • Giavalisco P, Hummel J, Lisec J, Inostroza AC, Catchpole G, Willmitzer L (2008) High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas. Anal Chem 80:9417–9425

    CAS  PubMed  Google Scholar 

  • Goulitquer S, Potin P, Tonon T (2012) Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs 10:849–880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, Bessant C, Connor S, Capuani G, Craig A, Ebbels T, Kell DB, Manetti C, Newton J, Paternostro G, Somorjai R, Sjöström M, Trygg J, Wulfert F (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241

    CAS  Google Scholar 

  • Hagel JMH, Facchini PJ (2008) Plant metabolomics: analytical platforms and integration with functional genomics. Phytochem Rev 7:479–497

    CAS  Google Scholar 

  • Hall RD (2011) Plant metabolomics in a nutshell: potential and future challenges. In RD Hall, ed, Biology of Plant Metabolomics, Annual Plant Reviews Volume 43, Wiley-Backwell, Oxford, pp 1–24

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Hansen MAE (2007) Data analysis. In SG Villas-Bôas, U Roessner, MAE Hansen, J Smedsgaard, J Nielsen, eds, Metabolome Analysis: An Introduction, John Wiley & Sons, Inc., Hoboken, pp 146–187

    Google Scholar 

  • Hartley SE, Eschen R, Horwood JM, Robinson L, Hill EM (2012) Plant secondary metabolites and the interactions between plants and other organisms: the potential of a metabolomic approach. In RI Glenn, M Dicke, SE Hartley, eds, The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, pp 204–225

    Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    CAS  PubMed  Google Scholar 

  • Hegeman AD (2010) Plant metabolomics — meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 9:139–148

    CAS  PubMed  Google Scholar 

  • Hegeman AD, Schulte CF, Cui Q, et al. (2007) Stable isotope assisted assignment of elemental compositions for metabolomics. Anal Chem 79:6912–6921

    CAS  PubMed  Google Scholar 

  • Hill CB, Roessner U (2013) Metabolic profiling of plants by GC-MS. In W Weckwerth, G Kahl, eds, The Handbook of Plant Metabolomics. Wiley-Blackwell, Weinheim, pp 3–23

    Google Scholar 

  • Horai H, Arita M, Kanaya S, Nihei Y, Iekeda T et al. (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    CAS  PubMed  Google Scholar 

  • Hummel J, Strehmel N, Bölling C, Schmidt S, Walther D, Kopka J (2013) Mass spectral search and analysis using the Golm Metabolome Database. In W Weckwerth, G Kahl, eds, The Handbook of Plant Metabolomics. Wiley-Blackwell, Weinheim, pp 321–343

    Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, Suzuki T, Suzuki H, Okazaki K, Kitayama M, Kanaya S, Aoki, K, Shibata D (2008) Metabolite annotations based on the integration of mass spectral information. Plant J 54:949–962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inokuma Y, Yoshioka S, Ariyoshi J, Arai T, Hitora Y, Takada K, Matsunaga S, Rissanen K, Fujita M (2013) X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495:461–467

    CAS  PubMed  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    CAS  Google Scholar 

  • IPCC (2001) Climate change 2001. Synthesis report — a contribution of Working group I, II and III to the Third Assessment Report IPCC (2007) Climate change 2007: the physical science basis. Working group I contribution to the IPCC Fourth Assessment Report

    Google Scholar 

  • Jassby AD (2000) Uncovering mechanisms of interannual variability from short ecological time series. In G Fogg, D Hinton, M Johnson, K Scow, eds, Integrated Assessment of Ecological Health, CRC Press, BocaRaton, pp 285–306

    Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in across boundaries of evolution, ethnography and ecology. Plos ONE 6:e20396. doi:10.1371/journal.pone.0020396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones OAH, Maguire ML, Griffin JL, Dias DA, Spurgeon DJ, Svendsen C (2013) Metabolomics and its use in ecology. Austral Ecol 38:713–720

    Google Scholar 

  • Kachlichi P, Einhorn J, Muth D, Kerhoas L, Stobiecki M (2008) Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J Mass Spectrom 43:572–586

    Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    CAS  PubMed  Google Scholar 

  • Kaspar S, Peukert M, Svatos A, Matros A, Mock H-P (2011) MALDIimaging mass spectrometry — an emerging technique in plant biology. Proteomics 11:1840–1850

    CAS  PubMed  Google Scholar 

  • Katajamaa M, Orešiè M (2007) Data processing for mass spectrometrybased metabolomics. J Chromatogr A 1158:318–328

    CAS  PubMed  Google Scholar 

  • Kempel A, Schmidt AK, Brandl R, Schädler M (2010) Support from the underground induced plant resistance depends on arbuscular mycorrhizal fungi. Functional Ecology 24:293–300

    Google Scholar 

  • Khan (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  PubMed  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolic analysis of plants. Nat Protoc 5:536–549

    CAS  PubMed  Google Scholar 

  • Kimball E, Rabinowitz JD (2006) Identifying decomposition products in extracts of cellular metabolites. Anal Biochem 358:273–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105 doi:10.1186/1471-2105-8-105

    PubMed Central  PubMed  Google Scholar 

  • Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) Fiehnlib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kloepper JW, Tuzum S, Ku JA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Tech 2:349–351

    Google Scholar 

  • Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624

    CAS  PubMed  Google Scholar 

  • Kohen FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Google Scholar 

  • Kopka J, Walther D, Allwood JW, Goodacre R (2011) Progress in chemometrics and biostatistics for plant applications, or: a good red wine is a bad white wine. Annu Plant Rev 43:317–342

    CAS  Google Scholar 

  • Kruger NJ, Troncoso-Ponce AT, Ratcliffe RG (2008) 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoc 2:2692–2703

    Google Scholar 

  • Krupa S, Fries N (1971) Studies on ectomycorrhizae of pine. I. Production of volatile organic compounds. Can J Bot 49:1425–1431

    CAS  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and Vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Plos One 8:e71805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368

    CAS  PubMed  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    CAS  Google Scholar 

  • Li J, Zhao G-Z, Varma A, Qin S, Xiong Z, Huang H-Y, Zhu W-Y, Z LX, Xu L-H, Zhang S, Li W-J (2012) An endophytic Pseudonocardia species induces the production of Artemisinin in Artemisia annua. Plos One 7:e51410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    CAS  PubMed  Google Scholar 

  • Lin F, Ye J, Wang H, Zhang A, Zhao B (2013) Host deception: predaceous fungus, Esteya vermicola, entices pine wood nematode by mimicking the scent of pine tree for nutrient. Plos One 8:e71676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ling YH, Zou Y, Perez-Soler R (2000) Induction of senescence-like phenotype and loss of paclitaxel sensitivity after wild-type p53 gene transfection of p53-null human non-small cell lung cancer H358 cells. Anticancer Res 20:693–702

    CAS  PubMed  Google Scholar 

  • Lommen A, Kools H (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu H, Dunn WB, Shen H, Kell DB, Liang Y (2008) Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. Trends Anal Chem 27:215–227

    CAS  Google Scholar 

  • Luster J, Göttlein A, Nowack B, Sarret G (2009) Sampling, defining, characterizing and modeling the rhizosphere — the soil science tool box. Plant Soil 321:457–482

    CAS  Google Scholar 

  • Maier T, Kuhn J, Müller C (2010) Proposal for field sampling of plants and processing in the lab for environmental metabolic fingerprinting. Plant Methods 6:6

    PubMed Central  PubMed  Google Scholar 

  • Mabrouk K, Ram N, Boisseau S, Strappazzon F, Rehaim A, Sadoul R, Darbon H, Ronjat M, de Waard M (2007) Critical amino acid residues of maurocalcine involved in pharmacology, lipid interaction and cell penetration. BBA-Biomembranes 1768:2528–2540

    CAS  PubMed  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mole Plant Pathol 13:614–629

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Mehmeti V, Fragner L, Wienkoop S (2013) Medicago truncatula root and shoot metabolomics: protocol for the investigation of the primary carbon and nitrogen metabolism based on GC-MS. In W Weckwerth, G Kahl, eds, The Handbook of Plant Metabolomics. Wiley-Blackwell, Weinheim, pp 111–123

    Google Scholar 

  • Menotta M, Gioacchini AM, Amicucci A, Buffalini M, Sisti D, Stocchi V (2004) Headspace solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomychorrhizae synthesis system. Rapid Commun Mass Spectrom 18:206–210

    CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–50

    PubMed  Google Scholar 

  • Moco S, Bino RJ, de Vos RCH, Vervoort J (2007) Metabolomics technologies and metabolite identification. Trend Anal Chem 26:855–866

    CAS  Google Scholar 

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65

    PubMed Central  PubMed  Google Scholar 

  • Naim MS (1965) Development of rhizosphere and rhizoplane microflora of Artistida coerulescens in the Lybian desert. Arch Mikrobiol 50:321–325

    Google Scholar 

  • Nebeker TE, Schmitz RF, Tisdale RA, Hobson KR (1995) Chemical and nutritional status of dwarf mistletoe, Armillaria root rot, and Comandra blister rust infected trees which may influence tree susceptibility to bark beetle attack. Can J Bot 73:360–369

    Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    CAS  PubMed  Google Scholar 

  • Pelzing M, Neusüß C, Macht M (2004) Recent applications in LCMS. LCGC Eur 17:38–39

    CAS  Google Scholar 

  • Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    CAS  PubMed  Google Scholar 

  • Pluskal T, Castillo S, Villar-Briones A, Orešiè M (2010) Mzmine2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395

    PubMed Central  PubMed  Google Scholar 

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60:82–99

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Rasmann S, Agrawal AA (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol 146:875–880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redestig H, Szymanski J, Hirai MY, Selbig J, Willmitzer L, Nikoloski Z, Saito K (2011) Data integration, metabolic networks and systems biology. Annu Plant Rev 43:261–316

    CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes Trends Microbiol 6:139–144

    CAS  PubMed  Google Scholar 

  • Richards E, Bessant C, Saini S (2002) Multivariate data analysis in electroanalytical chemistry. Electroanalysis 14:1533–1542

    CAS  Google Scholar 

  • Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Chang Biol 13:28–39

    Google Scholar 

  • Rodriguez RJ, White Jr JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182L314-30

    Google Scholar 

  • Roessner U (2007) Uncovering the plant metabolome: current and future challenges. In BJ Nikolau, Wurtele ES, eds, Concepts in Plant Metabolomics, Springer, Dordrecht, 71–85, pp 247–270

    Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. MPMI 19:827–837

    CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sardans J, Penuelas J, Rivas-Ubach A (2011) Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21:191–225

    CAS  Google Scholar 

  • Schripsema J (2009) Application of NMR in plant metabolomics: technics, problems and prospects. Phytochem Anal 21:14–21

    Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    CAS  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8:779–790

    CAS  PubMed  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc AM J 70:555–567

    CAS  Google Scholar 

  • Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    CAS  PubMed  Google Scholar 

  • Spivallo R, Bossi S, Maffei M, Bonfante P (2007a) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    Google Scholar 

  • Spivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007b) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Google Scholar 

  • Spivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    Google Scholar 

  • Stashenko EE, Martínez JR (2012) GC-MS Analysis of Volatile Plant Secondary Metabolites, In B Salih, Ö Çelikbýçak, eds, Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications, InTech, pp 247–270

    Google Scholar 

  • Stein SE (1999) An integrated method for spectrum extraction and compound identification from Gas Chromatography/Mass Spectrometry Data. J Am Soc Mass Spectrom 10:770–781

    CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Paccific yew. Science 260:214–216

    CAS  PubMed  Google Scholar 

  • Stobiecki M, Kachlicki P (2013) Liquid chromatographic-mass spectrometric analysis of flavonoids. In W Weckwerth, G Kahl, eds, The Handbook of Plant Metabolomics. Wiley-Blackwell, Weinheim, pp 197–213

    Google Scholar 

  • Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. Crit Rev Microbiol 4:333–382

    CAS  Google Scholar 

  • Stout MJ, Thaler JS, Thomma BPHJ (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689

    CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    CAS  PubMed  Google Scholar 

  • Sun X, Weckwerth W (2013) Using COVAIN to analyze metabolomics data. In W Weckwerth, G Kahl, eds, The Handbook of Plant Metabolomics. Wiley-Blackwell, Weinheim, pp 305–320

    Google Scholar 

  • Svatoš A, Mock H-P (2013) MALDI mass spectrometric imaging of plants. In W Weckwerth, G Kahl, eds, The Handbook of Plant Metabolomics. Wiley-Blackwell, Weinheim, pp 93–123

    Google Scholar 

  • Szymañska E, Saccenti E, Smilde AK, Westerhuis JA (2012) Doublecheck: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8:S3–S16

    Google Scholar 

  • Termonia P (2001) On the removal of random variables in data sets of meteorological observations. Meteor Atmos Phys 78:143–156

    Google Scholar 

  • Thwe AA, Kim JK, Li X, Kim YB, Uddin MR, Kim SJ, Suzuki T, Park NI, Park SU (2013) Metabolomic analysis and phenylpropanoid biosynthesis in hairy root culture of tartary buckwheat cultivars Plos One 8:e65349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toll, D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler J-P (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Google Scholar 

  • Turpault MP (2006) Sampling of rhizosphere soil for physico-chemical and mineralogical analyses by physical separation based on drying and shaking. In J Luster, R Finlay, eds, Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, pp 196–197

    Google Scholar 

  • Van Dam NM (2012) Phytochemicals as mediators of abovegroundbelowground interactions in plants. In RI Glenn, M Dicke, SE Hartley, eds, The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, pp 190–203

    Google Scholar 

  • Van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    PubMed Central  PubMed  Google Scholar 

  • Van der Putten WH, Bardgett RD, de Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford, MA, Christensen S, Eppinga MB, Fukami T, Hemerik L, Molofsky J, Schädler M, Scherber C, Strauss SY, Vos M, Wardle DA (2009) Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161:1–14

    PubMed Central  PubMed  Google Scholar 

  • Van der Sar S, Kim HK, Meissner A, Verpooote R, Choi YH (2013) Nuclear magnetic resonance spectroscopy for plant metabolite profiling. In W Weckwerth, G Kahl, eds, The Handbook of Plant Metabolomics. Wiley-Blackwell, Weinheim, pp 57–76

    Google Scholar 

  • Vas G, Vékey K (2004) Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J Mass Spectrom 39:233–254

    CAS  PubMed  Google Scholar 

  • Veldhoen N, Ikonomou MG, Helbing CC (2012) Molecular profiling of marine fauna: integration of omics with environmental assessment of the world’s oceans. Ecotoxicol Environ Saf 76:23–38

    CAS  PubMed  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    CAS  PubMed  Google Scholar 

  • Verginer M, Siegmund B, Cardinale M, Müller H, Choi Y, Míguez CB, Leitner E, Berg G (2010) Monitoring the plant epiphyte Methylobacterium extorquens DSM 21961 by real-time PCR and its influence on the strawberry flavor. FEMS Microbial Ecol 74:136–145

    CAS  Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2007) NMR-based metabolomics at work in phytochemistry. Phytochem Rev 6:3–14

    CAS  Google Scholar 

  • Villas-Bôas SG (2007) Sampling and sample prreparation. In SG Villas-Bôas, U Roessner, MAE Hansen, J Smedsgaard, J Nielsen, eds, Metabolome Analysis: An Introduction, John Wiley & Sons, Inc., Hoboken, pp 39–82

    Google Scholar 

  • De Vleesschauwer D, Höfte M (2009) Bacterial determinants and host defense responses underpinning rhizobacteria-mediated systemic resistance in rice. In GL Wang, B Valent, eds, Advances in Genetics, Genomics and Control of Rice Blast Disease, Springer, pp 191–206

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indic a reprograms barley to salt-stress tolerance, disease resistance, and higher yield. P Natl Acad Sci USA 102:13386–13391

    CAS  Google Scholar 

  • Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900

    CAS  PubMed  Google Scholar 

  • Weckwerth W, Morgenthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551–1558

    CAS  PubMed  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    CAS  PubMed  Google Scholar 

  • Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454

    CAS  PubMed  Google Scholar 

  • Wiklund S, Johansson E, Sjöström L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122

    CAS  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte — the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Google Scholar 

  • Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanai RD, Majdi H, Park BB (2003) Measured and modeled differences in nutrient concentrations between rhizosphere and bulk soil in a Norway spruce stand. Plant Soil 257:133–142

    CAS  Google Scholar 

  • Yu T, Peng H (2010) Quantification and deconvolution of asymmetric LC-MS peaks using the bi-Gaussian mixture model and statistical model selection. BMC Bioinformatics 11:559

    PubMed Central  PubMed  Google Scholar 

  • Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu C-M, Allen R, Melo IS, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    CAS  PubMed  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangkyu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Seo, YS. & Hegeman, A.D. Plant metabolomics for plant chemical responses to belowground community change by climate change. J. Plant Biol. 57, 137–149 (2014). https://doi.org/10.1007/s12374-014-0110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-014-0110-5

Keywords

Navigation