Skip to main content
Log in

Systematic Rearrangement of Korean Scirpus L. s.l. (Cyperaceae) as Inferred from Nuclear ITS and Chloroplast rbcL Sequences

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The genus Scirpus L. s.l. (Cyperaceae) has been accepted as a polyphyletic taxon by most plant taxonomists. This genus was separated into different genera by several different authors: Scirpus s. str., Trichophorum Pers., Bolboschoenus (Asch.) Palla, Schoenoplectus (Rchb.) Palla, and Schoenoplectiella Lye. The heterogeneity of Korean Scirpus s.l. has not yet been studied. We examined 17 taxa of Korean Scirpus s.l. by morphological characters and phylogenetic analyses based on nuclear ITS and chloroplast rbcL sequences. Phylogenetic analyses using maximum parsimony, maximum likelihood, and Bayesian method provided sufficient resolution. The phylogeny revealed the polyphyly of Korean Scirpus s.l. with five distinct clades. These clades correspond to Bolboschoenus, Schoenoplectus s.str., and Schoenoplectiella, Scirpus s.str., and Trichophorum, respectively. These five genera were delimited in terms of the morphology of tuber, bract, and inflorescence. By virtue of our findings, we suggest that the 17 taxa of Korean Scirpus s.l. should be placed into five genera as follows: Bolboschoenus (two species), Schoenoplectus (three species), Schoenoplectiella (six species), Scirpus s.str. (five species), and Trichophorum (one species).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amat JA (1995) Effects of wintering graylag geese Anser anser on their Scirpus food plants. Ecography 18:155–163

    Article  Google Scholar 

  • Ascherson P (1864) Flora der Provinz Brandenburg der Altmark und des Herzogthums Magdeburg, vol 3. Berlin, pp 753–754

  • Beetle AA (1949) Annotated list of original descriptions in Scirpus. Am Midl Nat 41:453–493

    Article  Google Scholar 

  • Bruhl JJ (1995) Sedge genera of the world: relationships and a new classification of the Cyperaceae. Aust Syst Bot 8:125–305

    Article  Google Scholar 

  • Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Report 17:53–57

    Article  CAS  Google Scholar 

  • Chung T (1957) Korean Flora, vol 2. Shinjisa, Seoul, pp 797–856, in Korean

    Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Springer Verlag, Berlin, pp 407–418

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Goetghebeur P (1986) Genera Cyperacearum. Ph.D. thesis. University of Ghent, Belgium

  • Goetghebeur P (1998) Cyperaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 4. Springer Verlag, Berlin, pp 141–190

    Google Scholar 

  • Govaerts R, Simson DA, Bruhl J, Egorova T, Goetghebeur P, Wilson K (2007) World checklist of Cyperaceae, Sedges. Royal Botanical Gardens, Kew

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Hipp AL (2008) Phylogeny and patterns of convergence in Carex sect. Ovales (Cyperaceae): evidence from ITS and 5.8S sequences. In: Naczi RFC, Ford BA (eds) Sedges: uses, diversity, and systematics of the Cyperaceae. Missouri Botanical Garden, St. Louis, pp 197–214

    Google Scholar 

  • Hirahara T, Katsuyama T, Hoshino T (2007) Suprageneric phylogeny of Japanese Cyperaceae based on DNA sequences from chloroplast ndhF and 5.8S nuclear ribosomal DNA. Acta Phytotaxon Geobot 58:57–68

    Google Scholar 

  • Hitchcock CL, Cronquist A (1973) Flora of the Pacific Northwest. University of Washington Press, Seattle and London, pp 600–602

    Google Scholar 

  • Jung J, Choi H-K (2010) A new endemic species in Trichophorum (Cyperaceae) from South Korea. Novon 20 (in press)

  • Kim C, Na HR, Choi H-K (2008) Conservation genetics of endangered Brasenia schreberi based on RAPD and AFLP markers. J Plant Biol 51:260–268

    Article  CAS  Google Scholar 

  • Komarov VL (1901) Flora Manshuriae, vol 1. Petropoli, pp 339–345

  • Koyama T (1958) Taxonomic study of the genus Scirpus Linne. Journal of Faculty of Science. University of Tokyo, Section III 7:271–366

    Google Scholar 

  • Koyama T (1978) Cyperaceae. In: Li H, Liu S, Huang T, Koyama T, DeVol CE (eds) Flora of Taiwan, vol 5. Epoch, Taipei, pp 191–372

    Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weight LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. PNAS 102:8369–8374

    Article  CAS  PubMed  Google Scholar 

  • Lee WT (1996) Lineamenta Florae Koreae, vol 1. Academy, Seoul, pp 1441–1534, In Korean

  • Lee TB (2003) Coloured flora of Korea, vol 2. Hyang-Mun, Seoul, pp 617–625, In Korean

    Google Scholar 

  • Lee YN (2006) New flora of Korea, vol 2. Kyo-Hak, Seoul, pp 607–619, In Korean

    Google Scholar 

  • Linnaeus C (1753) Species Plantarum, vol 1. Ray Society, London, pp 47–52

    Google Scholar 

  • Linnaeus C (1754) Genera Plantarum. Ray Society, Stockholm, p 26

    Google Scholar 

  • Lye KA (2003) Schoenoplectiella Lye, gen. nov. (Cyperaceae). Lidia 6:20–29

    Google Scholar 

  • McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (2006) International code of botanical nomenclature (Vienna Code). Regnum Veg 146.

  • Muasya AM, Simpson DA, Chase MW, Culham A (1998) An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Plant Syst Evol 211:257–271

    Article  CAS  Google Scholar 

  • Muasya AM, Simpson DA, Verboom GA, Goetghebeur P, Naczi RFC, Chase MW, Smets E (2009) Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Bot Rev (Lancaster) 75:2–21

    Article  Google Scholar 

  • Nakai T (1911) Flora Koreana part II. J Coll Sci Imp Univ Tokyo 31:292–295

    Google Scholar 

  • Nylander JAA (2004) MrModeltest 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Oh YC (2007) Cyperaceae. In: Park C (ed) The genera of vascular plant of Korea. Academy, Seoul, pp 1113–1181

    Google Scholar 

  • Oh YC, Ham EJ (1998) A taxonomic study on Scirpus Linne (Cyperaceae) of Korea. Korean J Plant Taxon 28:217–247 (In Korean)

    Google Scholar 

  • Ohwi J (1965) Flora of Japan. Shibundo, Tokyo, pp 193–293

    Google Scholar 

  • Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Mo Bot Gard 79:249–265

    Article  Google Scholar 

  • Palla E (1888a) Im botanischen Discussionsabende am 16 Marz sprach Herr Dr. Ed. Palla uber die Gattung Scirpus. Verh kais-k zool-bot Ges Wien 38:49

    Google Scholar 

  • Palla E (1888b) Zur Kenntnis der Gattung “Scirpus”. Englers Botanische Jahrbucher 10:293–301

    Google Scholar 

  • Palla E (1907) Bolboschoenus. In: Koch WDJ (ed) Deutschen und Schweizer Flora, ed 3. Leipzig, pp 2531–2532

  • Persoon CH (1805) Synopsis Plantarum, vol 1. Parisiis Lutetiorum, Paris, pp 69–70

    Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Reichenbach L (1846) Icones Florae Germanicae et Helveticae, vol 8. Lipsiae, pp 40

  • Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst Bot 26:318–341

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinfomatics (Oxf) 19:1572–1574

    Article  CAS  Google Scholar 

  • Simpson DA (2008) Frosted curls to tiger nuts: ethonobotany of Cyperaceae. In: Naczi RFC, Ford BA (eds) Sedges: uses, diversity, and systematics of the cyperaceae. Missouri Botanical Garden, St. Louis, pp 1–14

    Google Scholar 

  • Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Am J Bot 90:1071–1086

    Article  CAS  Google Scholar 

  • Simpson DA, Muasya AM, Alves MV, Bruhl JJ, Dhooge S, Chase MW, Furness CA, Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Reznicek AA, Nieuwborg R, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Xiufu Z (2007) Phylogeny of Cyperaceae based on DNA sequence data-a new rbcL analysis. Aliso 23:72–83

    Google Scholar 

  • Smith SG (2002) Schoenoplectus. In: Flora of North America Editorial Committee (ed) Flora of North America, vol 23. Oxford, New York, p 44

    Google Scholar 

  • Smith SG, Hayasaka E (2001) Delineation of Schoenoplectus sect. Malacogeton (Cyperaceae), new combination, and distinctions of species. J Jpn Bot 76:339–343

    Google Scholar 

  • Strong MT (1993) New combination in Schoenoplectus (Cyperaceae). Novon 3:202–203

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Ver. 4.0b10. Sinauer Associates Inc., Sunderland, MA

  • Takhtajan A (2009) Flowering plants, 2nd edn. Springer Verlag, Berlin, p 731

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Yano O, Hoshino T (2005) Molecular phylogeny and chromosomal evolution of Japanese Schoenoplectus (Cyperaceae), based on ITS and ETS 1f sequences. Acta Phytotaxon Geobot 56:183–195

    Google Scholar 

Download references

Acknowledgment

The authors thank to two anonymous reviewers for their valuable comments on the manuscript. This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST) (KRF-2009-0088457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Keun Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Used taxa with a GenBank accession number in additional maximum parsimony analysis. Bold letters indicate species of Scirpus s.l., and asterisks indicate type species of each separated genera. (DOC 59 kb)

Supplementary Fig. S1

Strict consensus of 72,514 most parsimonious trees based on rbcL sequence dataset (length = 459 steps, CI = 0.59, and RI = 0.84). The five independent clades including Korean Scirpus s.l. is an alternative to the clades in Fig. 2 of this manuscript. Aligned data has 1,293 total characters with 234 variable characters including 139 parsimony informative characters. Maximum parsimony analysis parameter is that gaps are treated as missing and character-state optimization with ACCTRAN (JPEG 633 kb)

Appendix 1

Appendix 1

Table 3 Analyzed taxa of Scirpus L. s.l. and related taxa with voucher information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Choi, HK. Systematic Rearrangement of Korean Scirpus L. s.l. (Cyperaceae) as Inferred from Nuclear ITS and Chloroplast rbcL Sequences. J. Plant Biol. 53, 222–232 (2010). https://doi.org/10.1007/s12374-010-9109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-010-9109-8

Keywords

Navigation