Skip to main content
Log in

Confocal Microscopy Study of Arabidopsis Embryogenesis Using GFP:mTn

  • ORIGINAL RESEARCH
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Embryogenesis in transgenic Arabidopsis plants with GFP:mTn, a chimeric fusion of soluble shifted green fluorescent protein and a mouse actin binding domain, was studied. Confocal laser scanning microscopy was used to determine patterns of formation and cellular responses during asymmetric cell division. Before such cells divide, the nucleus moves to the position where new cell walls are to be formed. The apicalbasal axis of the embryo develops mainly at the zygote to octant stage, and these events are associated with asymmetric divisions of the zygote and hypophyseal cells. Formation of the radial axis is established from the dermatogen to the globular-stage embryo via tangential cell division within the upper tiers. Bilateral symmetry of the embryo primarily happens at the triangular stage through zig-zag cell divisions of initials of the cotyledonary primordia. All stages of embryogenesis are described in detail here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An G, Ebert P, Mitra A, Ha S (1988) Binary vectors. In: Gelvin SB, Schilperoot RA (eds) Plant molecular biology manual. Kluwer Academic, Dordrecht, pp 1–19

    Google Scholar 

  • Berleth T, Chatfield S (2002) The Arabidopsis book. American Society of Plant Biologists, Maryland

    Google Scholar 

  • Berleth T, Jürgens G (1993) The role of the MONOPTEROS gene in organising the basal body region of the Arabidopsis embryo. Development 118:575–587

    Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trend Plant Sci 5:110–115

    Article  CAS  Google Scholar 

  • Brownlee C, Berger F (1995) Extracellular matrix and pattern in plant embryos: On the lookout for developmental information. Trends Gene 11:344–348

    Article  CAS  Google Scholar 

  • Casson S, Lindsey K (2006) The turnip mutant of Arabidopsis reveals the LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol 142:526–541

    Article  PubMed  CAS  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Colette AH, Heidstra R (2007) Who begets whom? Plant cell fate determination by asymmetric cell division. Curr Opin Plant Biol 10:1–8

    Article  Google Scholar 

  • Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:1–8

    Article  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller L, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  PubMed  CAS  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann A, Laux T (2004) Expression dynamics of Wox genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene. Development 117:149–162

    Google Scholar 

  • Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20:3609–3616

    Article  PubMed  Google Scholar 

  • Jürgens G, Mayer U (1994) Arabidopsis. In: Bard JBL (ed) Embryos, colour atlas of development. Wolfe, London, pp 7–21

    Google Scholar 

  • Kim I (2007) Cell-to-cell transport of macromolecules during early plant development. J Plant Biol 50:266–273

    Article  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Jürgens G (1997) Embryogenesis: a new start in life. Plant Cell 9:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Würschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16:190–202

    Article  Google Scholar 

  • Liu C-M, Xu Z-H, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  CAS  Google Scholar 

  • Long TA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M-A, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Lyndon RF (1990) Plant development—the cellular basis. Unwin Hyman, Boston

    Google Scholar 

  • Mansfield SG, Briaty LG (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69:461–476

    Article  Google Scholar 

  • Mayer U, Büttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117:149–162

    Google Scholar 

  • McCann RO, Craig SW (1997) The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc Natl Acad Sci U S A 94:5679–5684

    Article  PubMed  CAS  Google Scholar 

  • Mòl R, Matthys-Rochon E, Dumas PC (1994) The kinetics of cytological events during double fertilization in Zea mays L. Plant J 5:197–206

    Article  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  PubMed  CAS  Google Scholar 

  • Nawy T, Lukowitz W, Bayer M (2008) Talk global, act local-patterning the Arabidopsis embryo. Curr Opin Plant Biol 11:28–33

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci U S A 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Przemeck GKH, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant axialization. Planta 200:229–237

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62

    CAS  Google Scholar 

  • Song SK, Clark SE (2005) POL and related phosphatases and are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev Biol 285:272–284

    Article  PubMed  CAS  Google Scholar 

  • Spencer MW, Casson SA, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143:924–940

    Article  PubMed  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Experimental investigation on the shoot apex. In: Steeves TA, Sussex IM, Ed 2. Patterns in plant development. Cambridge University Press, New York, pp 86–99

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    PubMed  CAS  Google Scholar 

  • Torres-Ruiz RA, Jürgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120:2967–2978

    PubMed  CAS  Google Scholar 

  • Vernon DM, Meinke DW (1994) Embryonic transformation of the suspensor in twin a polyembryonic mutant of Arabidopsis. Dev Biol 165:566–573

    Article  PubMed  CAS  Google Scholar 

  • Vroemen CW, Langeveld S, Mayer U, Ripper G, Jürgens G, van Kammen A, De Vries SC (1996) Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer gene expression. Plant Cell 8:783–791

    Article  PubMed  CAS  Google Scholar 

  • Webb MC, Gunning BES (1991) The microtubular cytoskeleton during development of the zygote, proembryo, and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh. Planta 184:187–195

    Article  Google Scholar 

  • Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125:521–531

    PubMed  CAS  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    PubMed  CAS  Google Scholar 

  • Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711–717

    Article  PubMed  CAS  Google Scholar 

  • Yadegari R, de Paiva GR, Laux T, Koltunow AM, Apuya N, Zimmerman JL, Fischer RL, Harada JJ, Goldberg RB (1994) Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell 6:1713–1729

    Article  PubMed  CAS  Google Scholar 

  • Yeung EC, Sussex IM (1979) Embryogeny of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z Pflanzenphysiol 91:423–433

    CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. S.E. Clark, Dr. S.K. Song, and Mr. M. Hymes for their generous support of this work. This research was funded by the Korea Research Foundation (KRF-2007-030107008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Whang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whang, S.S. Confocal Microscopy Study of Arabidopsis Embryogenesis Using GFP:mTn. J. Plant Biol. 52, 312–318 (2009). https://doi.org/10.1007/s12374-009-9039-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-009-9039-5

Keywords

Navigation