Skip to main content
Log in

Safety of Interactive Robotics—Learning from Accidents

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Finland is ranked rather high in international robot density statistics. In Finland, robots are typically used in applications where they operate in close proximity to humans. The research described in this paper, sourced from Finnish databases, identified 25 severe accidents which can be attributed to robots. The current accident data can provide an insight into the type of accidents associated with future human-robot interaction (HRI) applications. Accident statistics indicate that most of the severe robot-related accidents involved crushing a person against a rigid object. As crushing hazards currently dominate accident statistics, and with HRI applications becoming increasingly common, humans are expected to be exposed to more crushing hazards in the future. The close proximity of the robots means that there is very little time to escape from crushing hazard. The prevention of collisions between robots and humans is paramount to reducing the amount of accidents. Actions to diminish the effects of any subsequent collision are also important. The control after a collision, however, needs to be very quick in order to minimise the damage caused by an impact. Current practice demands that upon detection of a collision, active movements are typically not allowed without a human supervision. Moving a robot away to a safe position and releasing any pressure against a person may save lives, but would entail some adjustments or new interpretations of the current safety requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABB Application Manual (2004–2008) Motion coordination and supervision RobotWare 5.0 document ID: 3HAC18154-1 revision: F ABB

  2. Accident Report Database of Safety Administration (TAPS) of Finland (2009) In Finnish. https://eportti.tietopalvelut.com/taps/TapsFrame_alku.asp (accessed 29.7.2009)

  3. Alvarado ML (2002) A risk assessment of human-robot interface operations to control the potential of injuries/losses at the xyz manufacturing company. The Graduate College University of Wisconsin-Stout, May 2002

  4. EN ISO 10218-1 (2006) Robots for industrial environment—safety requirements—part 1: robot. CEN, 30 p

  5. EN 60204-1 (2006) Safety of machinery. Electrical equipment of machines. Part 1: general requirements. CEN. 216 p

  6. Federation of Accident Insurance Institutions. http://www.tvl.fi/

  7. Haddadin S, Albu-Schäffer A (2010) Physical human robot interaction: dependability and safety. Videos related to tests. http://www.phriends.eu/videos.htm (accessed 8.1.2010)

  8. Haddadin S, Albu-Schäffer A, Strohmayr M, Frommberger M, Hirzinger G (2008) Injury evaluation of human-robot impacts. In: IEEE international conference on robotics and automation, Pasadena, CA, USA, May 19–23, 2008, pp 2203–2204

  9. Haddadin S, Albu-Schäffer A, Frommberger M, Hirzinger G (2008) The role of the robot mass and velocity in physical human-robot interaction—part II: constrained blunt impacts. In: IEEE international conference on robotics and automation, Pasadena, CA, USA, May 19–23, 2008

  10. Hollnagel E, Woods DD, Leveson N (eds) (2006) Resilience engineering. Concepts and precepts. Ashgate Publishing, Hampshire

    Google Scholar 

  11. ISO/DIS 10218-2 (2008) Draft standard. Robots for industrial environment—safety requirements—part 2: robot system and integration. ISO, 94 p

  12. Karwowski W, Järvinen J, Rahimi M (1994) Human aspects of industrial robotics. In: Salvendy G, Karwowski W (eds) Design of work and development of personnel in advanced manufacturing. Wiley, New York, pp 493–534

    Google Scholar 

  13. Klez TA (2003) Inherently safer design—its scope and future. Trans IChemE, 81 part B, pp 401–405

  14. Kuivanen R (1995) Methodology for simultaneous robot system safety design. VTT publications 219, 142 p + app 13 p

  15. Malm T (ed) (2008) Safety of collaborating robotics. In Finnish. Robotics society of Finland, 116 p + att 72 p

  16. Malm T, Toivonen S, Laine E (2007) Safety issues related to industrial robots collaborating with humans. In: Safety of industrial automated systems (SIAS2007), Tokyo, Japan, pp 216–221

  17. Robotics Society of Finland (2008) Industrial robot statistics in Finland 2007. In Finnish, 3 p. http://www.roboyhd.fi/ (accessed 8.1.2010)

  18. The IFR Statistical Department, study World Robotics. http://www.worldrobotics.org/downloads/2008_Pressinfo_english.pdf (accessed 10.3.2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Malm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malm, T., Viitaniemi, J., Latokartano, J. et al. Safety of Interactive Robotics—Learning from Accidents. Int J of Soc Robotics 2, 221–227 (2010). https://doi.org/10.1007/s12369-010-0057-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-010-0057-8

Keywords

Navigation