Skip to main content
Log in

Role of Melanin in Colletotrichum falcatum Pathogenesis Causing Sugarcane Red Rot

  • Research article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Melanin is one of the well-known secondary metabolite produced by fungi and other organisms which has a major role in pathogenicity. Our earlier studies established positive correlation on the production of secondary metabolites such as toxins, enzymes and melanin in relation to pathogen virulence and disease expression. In the present investigation, melanin induction as one of the factor in differentiating pathogen virulence was proved by extraction and quantification. The role of melanin in the pathogenesis of Colletotrichum falcatum has been studied in detail under the influence of melanin inhibitor, tricyclazole. Effect of tricyclazole on C. falcatum pathogenesis revealed that it is inhibitory to conidial germination, appressorium formation and its melanisation at lower concentrations. However, efficacy of tricyclazole was increased with increase in concentration in reducing C. falcatum growth, sporulation and symptom production in leaves and stalks. Finally, the presence of melanin in C. falcatum was confirmed by amplifying three melanin biosynthesis genes, viz. PKS1, SCD1 and THR1 at molecular level. The results confirm that melanin plays one of the important roles in C. falcatum pathogenesis and melanin inhibiting compounds have definite role in disease suppression by external application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chumley, F.G., and B. Valent. 1990. Genetic analysis of melanin-deficient, non-pathogenic mutants of Magnaporthe grisea. Molecular Plant-Microbe Interaction 3: 135–143.

    Article  CAS  Google Scholar 

  • Howard, R.J., and M.A. Ferrari. 1989. Role of melanin in appressorium formation. Experimental Mycology 13: 403–418.

    Article  CAS  Google Scholar 

  • Howard, R.J., M.A. Ferrari, D.H. Roach, and N.P. Money. 1991. Penetration of hard substrates at a fungus employing enormous turgor pressures. Proceedings of the National Academy of Science, USA 88: 11281–11284.

    Article  CAS  Google Scholar 

  • Kubo, Y., and I. Furusawa. 1991. Melanin biosynthesis: prerequisite for the successful invasion of the plant host by appressoria of Colletotrichum and Pyricularia. In The fungal spore and disease initiation in plants and animals, ed. G.T. Cole, and H.C. Hoch, 205–218. New York: Plenum.

    Chapter  Google Scholar 

  • Kubo, Y., K. Suzuki, I. Furusawa, N. Ishida, and M. Yamamoto. 1982. Relation of appressorium pigmentation and penetration of nitrocellulose membranes by Colletotrichum lagenarium. Phytopathology 72: 498–501.

    Article  CAS  Google Scholar 

  • Kubo, Y., Y. Takano, N. Endo, N. Yasuda, S. Tajima, and I. Furusawa. 1996. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Applied and Environmental Microbiology, 62(12): 4340–4344.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung, K.J., and J.C. Rhodes. 1986. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infection and Immunity 51: 218–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.K., S.J. Ha, S.Y. Kim, and D.K. Oh. 2001. Increased erythritol production in Torula sp. by phytic acid. Biotechnology Letters 23: 497–500.

    Article  CAS  Google Scholar 

  • Lee, J., H. Jung, and S. Kim. 2003. 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase. Applied Environmental Microbiology 69 (6): 3427–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundqvist, T., J. Rice, C.N. Hodge, G.S. Basarab, J. Pierce, and Y. Lindqvist. 1994. Crystal structure of scytalone dehydratase—a disease determinant of the rice pathogen Magnaporthe grisea. Structure (London) 2: 937–944.

    Article  CAS  Google Scholar 

  • Malathi, P., R. Viswanathan, A. Arunkumuran, and G. Ganeshkumar. 2012. Fungal pathogenicity gene expression as a tool to measure defense gene expression during Sugarcane × Colletotrichum falcatum interaction. DHR International Journal of Biomedical and Life Sciences 3 (1): 2278–8301.

    Google Scholar 

  • Malathi, P., and R. Viswanathan. 2012. Identification of pathogenicity determinants in Colletotrichum falcatum using wild and mutant cultures. Sugar Tech 14 (4): 383–390.

    Article  CAS  Google Scholar 

  • Malathi, P., R. Viswanathan, P. Padmanaban, D. Mohanraj, and A. Ramesh Sundar. 2002. Microbial detoxification of Colletotrichum falcatum toxin. Research communications-Current Science 83: 745–749.

    CAS  Google Scholar 

  • Mohanraj, D., P. Padmanaban, and M. Karunakaran. 2003. Effect of phytotoxin of Colletotrichum falcatum Went. (Physalospora tucumanensis) on sugarcane in tissue culture. Acta Phytopathologica Entomologica Hungarica 38: 21–28.

    Article  CAS  Google Scholar 

  • Perpetua, N.S., Y. Kubo, N. Yasuda, and I. Furusawa. 1996. Cloning and characterization of melanin biosynthesis THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Molecular Plant-Microbe Interactons 9: 323–329.

    Article  CAS  Google Scholar 

  • Pihet, M., P. Vandeputte, G. Tronchin, G. Renier, P. Saulnier, S. Georgeault, R. Mallet, D. Chabasse, F. Symoens, and J.P. Bouchara. 2009. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiology 9: 177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero-Martinez, R., M. Wheeler, A. Guerrero-Plata, G. Rico, and H. Torres-Guerrero. 2000. Biosynthesis and functions of melanin in Sporothrix schenkii. Infection and Immunity 68: 3696–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen, and R.W. Allard. 1984. Ribosomal DNAsepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of National Academy of Science 81: 8014–8019.

    Article  CAS  Google Scholar 

  • Sava, V.M., B.N. Galkin, M.Y. Hong, P.C. Yang, and G.S. Huang. 2001. A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity. Food Research International 34: 337–343.

    Article  CAS  Google Scholar 

  • Srinivasan, K.V., and N.R. Bhat. 1961. Red rot of sugarcane: Criteria for grading resistance. Journal of the Indian Botanical Society 40: 566–577.

    Google Scholar 

  • Staples, R.C., and H.C. Hoch. 1987. Infection structures—Form and function. Experimental Mycology 11: 163–169.

    Article  Google Scholar 

  • Subhani, M.N., M.A. Chaudhry, A. Khaliq, and F. Muhammad. 2008. Efficacy of various fungicides against sugarcane red rot (Colletotrichum falcatum). International Journal of Agriculture and Biology 10 (6): 725–727.

    Google Scholar 

  • Ten, L.N., N.N. Tepanichenko, A.A. Tyschenko, M.M. Faiziev, S.Z. Mukhammedzhanov, and K.A. Aslanov. 1987. Melaninogenesis and toxin production in phytopathogenic fungi. Microbiology 49: 34–41.

    Google Scholar 

  • Vidal-Cros, A., F. Viviani, G. Labesse, M. Boccara, and M. Gaudry. 1994. Poly hydroxy naphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea: Purification, cDNA cloning and sequencing. European Journal of Biochemistry 219: 985–992.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, M.H., and G.A. Greenblatt. 1988. The inhibition of melanin biosynthetic reactions in Pyricularia oryzae by compounds that prevent rice blast disease. Experimental Mycology 12: 151–160.

    Article  CAS  Google Scholar 

  • Woloshuk, C.P., H.D. Sisler, M.C. Tokousbalides, and S.R. Duntly. 1980. Melanin biosynthesis in Pyricularia oryzae: site of tricyclazole inhibition and pathogenicity of melanin deficient mutants. Pesticide Biochemistry and Physiology 14: 256–264.

    Article  CAS  Google Scholar 

  • Yamaguchi, I., and Y. Kubo. 1992. Target sites of melanin biosynthesis inhibitors. In Target sites of fungicide action, ed. W. Koller, 101–118. Boca Raton FL: CRC Press.

    Google Scholar 

  • Yoder, O.C., and B.G. Turgeon. 2001. Fungal genomics and pathogenicity. Current Opinion in Plant Biology 4: 315–321.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, ICAR-Sugarcane Breeding Institute, for providing facilities and constant encouragement.

Funding

This study was done as part of ICAR-SBI fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Malathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaverinathan, K., Scindiya, M., Malathi, P. et al. Role of Melanin in Colletotrichum falcatum Pathogenesis Causing Sugarcane Red Rot. Sugar Tech 19, 584–591 (2017). https://doi.org/10.1007/s12355-017-0519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0519-5

Keywords

Navigation