Skip to main content
Log in

Improved Dextranase Production by Chaetomium gracile Through Optimization of Carbon Source and Fermentation Parameters

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The fungus Chaetomium gracile is used for production of dextranase and removal of dextran during sugar manufacturing process, however, the productivity of dextranase is low. In this study, we investigated the influence of carbon source on dextranase production using dextrans of different sizes. Culturing C. gracile in medium containing crude dextran and use of high molecular weight of dextrans resulted in the higher yield of dextranase production (80.5 ± 4.0 U ml−1). Cells incubated in medium containing glucose as sole carbon source exhibited a high growth rate but did not produce dextranase. Based on these findings, fed-batch and two-step fermentation strategies were employed to further increase the yield of dextranase with production of 159.5 and 187.0 U ml−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basan, H., M. Gumusderelioglu, and M.T. Orbey. 2007. Release characteristics of salmon calcitonin from dextran hydrogels for colon-specific delivery. European Journal of Pharmaceutics and Biopharmaceutics 65(1): 39–46. doi:10.1016/j.ejpb.2006.07.008.

    Article  CAS  PubMed  Google Scholar 

  • Bashari, M., F. Tounkara, M.H. Abdelhai, C. Lagnika, X.M. Xu, and Z.Y. Jin. 2013. Impact of dextranase on sugar manufacturing and its kinetic on the molecular weights of remaining dextran. Sugar Tech 15(1): 84–93. doi:10.1007/s12355-012-0195-4.

    Article  CAS  Google Scholar 

  • Bhatia, S., G. Bhakri, M. Arora, S.K. Uppal, and S.K. Batta. 2010. Dextranase production from Paecilomyces lilacinus and its application for dextran removal from sugarcane juice. Sugar Tech 12(2): 133–138.

    Article  CAS  Google Scholar 

  • Bloom, J.D., M.M. Meyer, P. Meinhold, C.R. Otey, D. MacMillan, and F.H. Arnold. 2005. Evolving strategies for enzyme engineering. Current Opinion in Structural Biology 15(4): 447–452. doi:10.1016/j.sbi.2005.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Cai, R.H., M.S. Lu, Y.W. Fang, Y.L. Jiao, Q. Zhu, Z.P. Liu, and S.J. Wang. 2014. Screening, production, and characterization of dextranase from Catenovulum sp. Annals of Microbiology 64(1): 147–155. doi:10.1007/s13213-013-0644-7.

    Article  CAS  Google Scholar 

  • Daisuke, T., H. Nobutsugu, H. Tsuneyo, and F. Juichiro. 1971. Studies on mold dextranases. Agricultural and Biological Chemistry 35(11): 1727–1732.

    Article  Google Scholar 

  • Eggleston, G., and A. Monge. 2005. Optimization of sugarcane factory application of commercial dextranases. Process Biochemistry 40(5): 1881–1894. doi:10.1016/j.procbio.2004.06.025.

    Article  CAS  Google Scholar 

  • Eggleston, G., A. Monge, B. Montes, and D. Stewart. 2006. Factory trials to optimize the application of dextranase in raw sugar manufacture: part I. International Sugar Journal 108(1293): 529–537.

    Google Scholar 

  • Eggleston, G., G. Cote, and C. Santee. 2011. New insights on the hard-to-boil massecuite phenomenon in raw sugar manufacture. Food Chemistry 126(1): 21–30. doi:10.1016/j.foodchem.2010.10.038.

    Article  CAS  Google Scholar 

  • Erhardt, F.A., and H.J. Jordening. 2007. Immobilization of dextranase from Chaetomium erraticum. Journal of Biotechnology 131(4): 440–447. doi:10.1016/j.jbiotec.2007.07.946.

    Article  CAS  PubMed  Google Scholar 

  • Finnegan, P.M., S.M. Brumbley, M.G. O’Shea, K.M.H. Nevalainen, and P.L. Bergquist. 2004. Paenibacillus isolates possess diverse dextran-degrading enzymes. Journal of Applied Microbiology 97(3): 477–485. doi:10.1111/j.1365-2672.2004.02325.x.

    Article  CAS  PubMed  Google Scholar 

  • Gan, W., H. Zhang, Y. Zhang, and X. Hu. 2014. Biosynthesis of oligodextrans with different Mw by synergistic catalysis of dextransucrase and dextranase. Carbohydrate Polymers 112: 387–395. doi:10.1016/j.carbpol.2014.06.018.

    Article  CAS  PubMed  Google Scholar 

  • Hild, E., S.M. Brumbley, M.G. O’Shea, H. Nevalainen, and P.L. Bergquist. 2007. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Applied Microbiology and Biotechnology 75(5): 1071–1078. doi:10.1007/s00253-007-0936-6.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez, E.R. 2009. Dextranase in sugar industry: a review. Sugar Tech 11(2): 124–134.

    Article  Google Scholar 

  • Johannes, T.W., and H. Zhao. 2006. Directed evolution of enzymes and biosynthetic pathways. Current Opinion in Microbiology 9(3): 261–267. doi:10.1016/j.mib.2006.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Jung, Y.K., and S.Y. Lee. 2011. Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. Journal of Biotechnology 151(1): 94–101. doi:10.1016/j.jbiotec.2010.11.009.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H.K., J.Y. Park, J.S. Ahn, S.H. Kim, and D. Kim. 2009. Cloning of a gene encoding dextranase from Lipomyces starkeyi and its expression in Pichia pastoris. Journal of Microbiology and Biotechnology 19(2): 172–177. doi:10.4014/Jmb.0802.100.

    Article  CAS  PubMed  Google Scholar 

  • Khalikova, E., P. Susi, and T. Korpela. 2005. Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiology and Molecular Biology Reviews 69(2): 306–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y.-M., and D. Kim. 2010. Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Applied Microbiology and Biotechnology 85(3): 581–587. doi:10.1007/s00253-009-2121-6.

    Article  CAS  PubMed  Google Scholar 

  • Koenig, D.W., and D.F. Day. 1989. Induction of Lipomyces starkeyi dextranase. Applied and Environmental Microbiology 55(8): 2079–2081.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long, L., G.C. Du, C. Jian, W. Miao, and S. Jun. 2008. Influence of culture modes on the microbial production of hyaluronic acid by Streptococcus zooepidemicus. Biotechnology and Bioprocess Engineering 13(3): 269–273. doi:10.1007/s12257-007-0193-7.

    Article  Google Scholar 

  • Purushe, S., D. Prakash, N.N. Nawani, P. Dhakephalkar, and B. Kapadnis. 2012. Biocatalytic potential of an alkalophilic and thermophilic dextranase as a remedial measure for dextran removal during sugar manufacture. Bioresource technology 115: 2–7. doi:10.1016/j.biortech.2012.01.002.

    Article  CAS  PubMed  Google Scholar 

  • Sommer, C., N. Volk, and M. Pietzsch. 2011. Model based optimization of the fed-batch production of a highly active transglutaminase variant in Escherichia coli. Protein Expression and Purification 77(1): 9–19. doi:10.1016/j.pep.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  • van Rensburg, E., R. den Haan, J. Smith, W.H. van Zyl, and J.F. Gorgens. 2012. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Applied Microbiology and Biotechnology 96(1): 197–209. doi:10.1007/s00253-012-4037-9.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D.T., H.B. Zhang, L.J. Huang, and X.Q. Hu. 2011. Purification and characterization of extracellular dextranase from a novel producer, Hypocrea lixii F1002, and its use in oligodextran production. Process Biochemistry 46(10): 1942–1950. doi:10.1016/j.procbio.2011.06.025.

    Article  CAS  Google Scholar 

  • Xu, Z.K., Q. Yang, R.Q. Kou, J. Wu, and J.Q. Wang. 2004. First results of hemocompatible membranes fabricated from acrylonitrile copolymers containing sugar moieties. Journal of Membrane Science 243(1–2): 195–202. doi:10.1016/j.memsci.2004.06.020.

    Article  CAS  Google Scholar 

  • Yoshino, S., M. Oishi, R. Moriyama, M. Kato, and N. Tsukagoshi. 1995. Two family G xylanase genes from Chaetomium gracile and their expression in Aspergillus nidulans. Current Genetics 29(1): 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Zohra, R.R., A. Aman, R.R. Zohra, A. Ansari, M. Ghani, and S.A. Qader. 2013. Dextranase: hyper production of dextran degrading enzyme from newly isolated strain of Bacillus licheniformis. Carbohydrate Polymers 92(2): 2149–2153. doi:10.1016/j.carbpol.2012.11.044.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31460026, 31560027), the Key Fundamental Research Fund of the Education Department of Guangxi Province (ZD2014001), the Key Scientific Research Fund of Guangxi Province (14122004-2), and the Fundamental Research Fund of Guangxi University (XJZ140293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Lu, H., Hang, F. et al. Improved Dextranase Production by Chaetomium gracile Through Optimization of Carbon Source and Fermentation Parameters. Sugar Tech 19, 432–437 (2017). https://doi.org/10.1007/s12355-016-0476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-016-0476-4

Keywords

Navigation