Skip to main content
Log in

Simple Models for Predicting Agricultural Trafficability on Cohesive Soils Cultivated with Sugarcane in Brazil

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Preconsolidation stress (σ p) is an important physical indicator of the load-bearing capacity of soil, which is used for predicting agricultural trafficability. This study aimed to compare prediction models for agricultural trafficability using soil physical attributes as explanatory variables on soils of coastal lands cultivated with sugarcane in the Northeast of Brazil. The study was carried out on a cohesive soil area cultivated with sugarcane at which 42 points were sampled in order to collect undisturbed soil samples at 0.10-0.13 and at 0.30-0.33 m layers, summing up 84 samples. The following variables were analysed: water content (θ), bulk density (ρ), penetration resistance (PR) and σ p. Three models were fitted to predict σ p as a function of ρ, θ and PR. Bulk density and water content can be used as predictors of agricultural trafficability on cohesive soils, and have improved predictions when used together in regression models. However, despite the fact that water content and bulk density are known to be correlated, soil penetration resistance can be used as a practical soil trafficability criterion, by fitting a simple linear regression, for it is easily and quickly measurable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ABNT—Associação Brasileira de Normas Técnicas. 1990. NBR 12007: Ensaio de adensamento unidimensional, 13. Rio de Janeiro.

  • Ajayi, A.E., M.S. Dias Júnior, N. Curi, C.F. Araújo Júnior, O.O. Aladenola, T.T. Souza, and A.A. Inda Junior. 2009. Comparison of estimation methods of soil strength in five soils. Revista Brasileira de Ciência do Solo 33: 487–495.

    Article  Google Scholar 

  • Alexandrou, A., and R. Earl. 1998. The relationship among the pre-compaction stress, volumetric water content and initial dry bulk density of soil. Journal of Agricultural Engineering Research 71: 75–80.

    Article  Google Scholar 

  • Busscher, W.J. 1990. Adjustment of flat-tipped penetrometer resistance data to common water content. Transactions of the ASAE 3: 519–524.

    Article  Google Scholar 

  • Chaplain, V., P. Defossez, G. Richard, D. Tessier, and J. Roger-Estrade. 2011. Contrasted effects of no-till on bulk density of soil and mechanical resistance. Soil & Tillage Research 111: 105–114.

    Article  Google Scholar 

  • Debiasi, H., R. Levien, C.R. Trein, O. Conte, and M. Mazurana. 2008. Capacidade de suporte e compressibilidade de um Argissolo influenciadas pelo tráfego e por plantas de cobertura de inverno. Revista Brasileira de Ciência do Solo 32: 2629–2637.

    Article  CAS  Google Scholar 

  • Dias Junior, M. S. 1994. Compression of three soils under longterm tillage and wheel traffic. Ph.D. Thesis, East Lansing: Michigan State University, EUA. 114.

  • Dias Junior, M.S., A.R. Silva, S. Fonseca, and F.P. Leite. 2004. Método alternativo de avaliação da pressão de pré-consolidação por meio de um penetrômetro. Revista Brasileira de Ciência do Solo 28: 805–810.

    Article  Google Scholar 

  • Dias Junior, M.S., and F.J. Pierce. 1995. A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Tecnology 8: 139–151.

    Article  Google Scholar 

  • EMBRAPA. 1997. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 370. Manual de análises químicas de solos, plantas e fertilizantes. Brasília: EMBRAPA.

  • EMBRAPA. 2013. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 353. EMBRAPA: Sistema Brasileiro de Classificação de Solos. Rio de Janeiro.

    Google Scholar 

  • Farias, I.L., E.P. Pacheco, and P.R.A. Viégas. 2013. Characterisation of the optimal hydric interval for yellow Argisol cultivated with sugarcane on the coastal plains of Alagoas. Revista Ciência Agronômica 44: 669–675.

    Article  Google Scholar 

  • Figueiredo, G.C., A.P. Silva, C.A. Tormena, N.F.B. Giarola, S.O. Morais, and B.G. Almeida. 2011. Desenvolvimento de um consolidômetro pneumático: modelagem da compactação, penetrometria e resistência tênsil de agregados de solo. Revista Brasileira de Ciência do Solo 35: 389–402.

    Article  Google Scholar 

  • Gao, W., T. Ren, A.G. Bengough, L. Auneau, C.W. Watts, and W.R. Whalley. 2012. Predicting penetrometer resistance from the compression characteristic of soil. Soil Science Society of America Journal 76: 361–369.

    Article  CAS  Google Scholar 

  • Giarola, N.F.B., A.P. Silva, S. Imhoff, and A.R. Dexter. 2003. Contribution of natural soil compaction on hardsetting behavior. Geoderma 113: 95–108.

    Article  Google Scholar 

  • Hemmat, A., M. Yaghoubi-Taskoh, A. Masoumi, and M.R. Mosaddeghi. 2014. Relationships between rut depth and soil mechanical properties in a calcareous soil with unstable structure. Biosystems Engineering 118: 147–155.

    Article  Google Scholar 

  • Horn, R., and H. Fleige. 2009. Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Soil & Tillage Research 102: 201–208.

    Article  Google Scholar 

  • Imhoff, S., A.P. Silva, and D. Fallow. 2004. Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Science Society of America Journal 68: 17–24.

    Article  CAS  Google Scholar 

  • Keller, T., M. Lamandé, P. Schjønning, and A.R. Dexter. 2011. Analysis of soil compression curves from uniaxial confined compression tests. Geoderma 163: 13–23.

    Article  Google Scholar 

  • Lima, C.L.R., A.P. Silva, S.C. Imhoff, and T.P. Leão. 2006. Estimativa da capacidade de suporte de carga do solo a partir da avaliação da resistência à penetração. Revista Brasileira de Ciência do Solo 30: 217–223.

    Article  Google Scholar 

  • Lima, H.V., A.P. Silva, N.F.B. Giarola, and S. Imhoff. 2014. Index of soil physical quality of hardsetting soils on the Brazilian coast. Revista Brasileira de Ciência do Solo 38: 1722–1730.

    Article  Google Scholar 

  • Lima, M.P.L., C.A.S. Magalhães, G.C. Oliveira, and J.M. Lima. 2010. Structural quality of soils cultivated with coffee and pasture in an environmental protection area. Revista Brasileira de Ciência do Solo 34: 709–716.

    Article  Google Scholar 

  • Lima, R.P., M.J. Leon, and A.R. Silva. 2013. Compactação do solo de diferentes classes texturais em áreas de produção de cana-de-açúcar. Revista Ceres 60: 16–20.

    Article  Google Scholar 

  • Oliveira, V.S., M.M. Rolim, Y.D.J. Costa, E.M.R. Pedrosa, and E.F.F. Silva. 2011. Compressibilidade de um Argissolo Amarelo distrocoeso submetido a diferentes manejos. Revista Brasileira de Engenharia Agrícola e Ambiental 15: 435–442.

    Google Scholar 

  • Pacheco, E.P., and J.R.B. Cantalice. 2011a. Análise de trilha no estudo dos efeitos de atributos físicos e matéria orgânica sobre a compressibilidade e resistência à penetração de um Argissolo cultivado com cana-de-açucar. Revista Brasileira de Ciência do Solo 35: 417–428.

    Article  Google Scholar 

  • Pacheco, E.P., and J.R.B. Cantalice. 2011b. Compressibilidade, resistência a penetração e Intervalo Hídrico Ótimo de um Argissolo amarelo cultivado com cana-de-açúcar nos tabuleiros costeiros de alagoas. Revista Brasileira de Ciência do Solo 35: 403–415.

    Article  Google Scholar 

  • Pais, P.S.M., M.S. Dias Junior, A.C. Dias, P. Iori, P.T.G. Guimarães, and G.A. Santos. 2013. Load-bearing capacity of a red-yellow latosol cultivated with coffee plants subjected to different weed managements. Ciência & Agrotecnologia 37: 145–151.

    Article  CAS  Google Scholar 

  • R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at: http://www.R-project.org/. Accessed 20 Jan 2015.

  • Saffih-Hdadi, K., P. Défossez, G. Richard, Y.J. Cui, A.M. Tang, and V. Chaplain. 2009. Method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil & Tillage Research 105: 96–103.

    Article  Google Scholar 

  • Schäffer, B., P. Boivin, and R. Schulin. 2010. Compressibility of repacked soil as affected by wetting and drying between uniaxial compression tests. Soil Science Society of America Journal 74: 1483–1492.

    Article  Google Scholar 

  • Severiano, E.C., G.C. Oliveira, M.S. Dias Júnior, M.B. Castro, L.C. Oliveira, and K.A.P. Costa. 2010. Compactação de solos cultivados com cana-de-açúcar: II-quantificação das restrições às funções edáficas do solo em decorrência da compactação prejudicial. Engenharia Agrícola 30: 414–423.

    Article  Google Scholar 

  • Silva, A.R., and R.P. Lima. 2015. Soilphysics: An R package to determine soil preconsolidation pressure. Computers & Geosciences 84: 54–60.

    Article  Google Scholar 

  • Soil Survey Staff. 2010. Keys to soil taxonomy, 11th ed. Washington: USDA/National Resources Conservation Center.

    Google Scholar 

  • Tang, A.M., Y. Cui, G. Richard, and P. Défossez. 2011. A study on the air permeability as affected by compression of three French soils. Geoderma 162: 171–181.

    Article  Google Scholar 

  • Warrick, A.W., and D.R. Nielsen. 1980. Spatial variability of soil physical properties in the field. In Applications of soil physics, ed. Hillel Daniel, 319–344. New York: Academic.

    Google Scholar 

Download references

Acknowledgments

We thank the Coordination for Improvement of Higher Level Personnel (CAPES, Brazil) for granting scholarships and the Universidade Federal Rural de Pernambuco (Brazil) for the financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. de Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, R.P., Rolim, M.M., da Silva, A.R. et al. Simple Models for Predicting Agricultural Trafficability on Cohesive Soils Cultivated with Sugarcane in Brazil. Sugar Tech 18, 347–353 (2016). https://doi.org/10.1007/s12355-015-0413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0413-y

Keywords

Navigation