Skip to main content
Log in

Phenolics Content and Inhibitory Effect of Sugarcane Molasses on α-Glucosidase and α-Amylase In Vitro

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane molasses is a wealthy source of health beneficial phenolic compounds and exhibited significant biological properties. Present study was designed to assess the inhibitory effect of sugarcane molasses on α-glucosidase and α-amylase. Hypoglycemic fractions were extracted using macro-porous and ion exchange resins. The total phenolics content was 0.179 ± 0.003 mg GAE per milligram of extract. Four phenolic acids which include caffeic acid (11.64 mg/g), ferulic acid (10.49 mg/g), chlorogenic acid (1.77 mg/g), and gallic acid (0.87 mg/g) were identified and quantified by high-performance liquid chromatography. The inhibitory activities of sugarcane molasses were 4.693 mg/mL (Km = 1.099 mL/mg) and 4.254 mg/mL (Km 0.238 mL/mg) for α-glucosidase and α-amylase, respectively, which revealed that sugarcane molasses could be a useful addition in medicinal preparations as nutraceutical and functional food for diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adisakwattana, S., P. Chantarasinlapin, H. Thammarat, and S. Yibchok-Anun. 2009. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. Journal of Enzyme Inhibition and Medicinal Chemistry 245: 194–200.

    Google Scholar 

  • Adisakwattana, S., T. Ruengsamran, P. Kampa, and W. Sompong. 2012. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complementary and Alternative Medicine 12: 110–111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andjelkovic, M., J.V. Camp, B.D. Meulenaer, G. Depaemelaere, C. Socaciu, and M. Verloo. 2006. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry 98: 23–31.

    Article  CAS  Google Scholar 

  • Burda, S., and W. Oleszek. 2001. Antioxidant and antiradical activities of flavonoids. Journal of Agriculture and Food Chemistry 49: 2774–2779.

    Article  CAS  Google Scholar 

  • Burlingham, B.T., and T.S. Widlanski. 2003. An intuitive look at the relationship of Ki and IC50: A more general use for the Dixon plot. Journal of Chemical Education 80: 214–218.

    Article  CAS  Google Scholar 

  • Chan, S., S. Kanchanatawee, and K. Jantama. 2012. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Bioresource Technology 103: 329–336.

    Article  CAS  PubMed  Google Scholar 

  • Department of Agriculture, Forestry and Fisheries, Okinawa Prefectural Government 2012. Annual report of sugarcane and sugar production in Okinawa prefecture in Japanese. 76–90.

  • De Sales, P.M., P.M. De Souza, L.A. Simeoni, P.O. Magalhães, and D. Silveira. 2012. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. Journal of Pharmacy and Pharmaceutical Sciences 15: 141–183.

    Article  PubMed  Google Scholar 

  • Fan, P., L.A. Terrier, A. Hay, A. Marston, and K. Hostettmann. 2010. Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F Shmidt ex Maxim Polygonaceae. Fitoterapia 81: 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Feng, S.M., Z.S. Luo, Y.B. Zhang, Z. Zhong, and B.Y. Lu. 2014. Phytochemical contents and antioxidant capacities of different parts of two sugarcane Saccharum officinarum L. cultivars. Food Chemistry 151: 452–458.

    Article  CAS  PubMed  Google Scholar 

  • Ferreres, F., J. Vinholes, A. Gil-Izquierdo, P. Valentão, R.F. Gonçalves, and P.B. Andrade. 2013. In vitro studies of α-glucosidase inhibitors and antiradical constituents of Glandora diffusa (Lag.) DC Thomas infusion. Food Chemistry 136: 1390–1398.

    Article  CAS  PubMed  Google Scholar 

  • Funke, I., and M.F. Melzig. 2005. Effect of different phenolic compounds on α-amylase activity: screening by microplate-reader based kinetic assay. Pharmazie 6010: 796–797.

    Google Scholar 

  • Fu, X., S.J. Yu, Y.G. Min, and C.C. Chung. 2003. Extraction of natural antioxidants from sugarcane. Sugarcane and Canegar 5: 37–41.

    Google Scholar 

  • Israili, Z.H. 2011. Advances in the treatment of type 2 diabetes mellitus. American Journal of Therapeutics 18: 117–152.

    Article  PubMed  Google Scholar 

  • Jia, G.F., and Y.J. Di. 2012. Research advancement of separation and physiological activity of natural α-glucosidase inhibitor. Food and Nutrition in China 18: 65–68.

    Google Scholar 

  • Kandra, L. 2003. α-amylase of medical and industrial importance. Journal of Molecular Structure: THEOCHEM 666: 487–498.

  • Kang, W.Y., L. Zhang, and Y.L. Song. 2009. α-glucosidase inhibitors from Luculiapinciana. China Journal of Chinese Material 344: 406–409.

    Google Scholar 

  • Kim, J.S., T.K. Hyun, and M.J. Kim. 2011. The inhibitory effects of ethanol extracts from Sorghum. Food Chemistry 124: 1647–1651.

    Article  CAS  Google Scholar 

  • Lordan, S., T.J. Smyth, A. Soler-Vila, C. Stanton, and R.P. Ross. 2013. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry 1413: 2170–2176.

    Article  Google Scholar 

  • Phan, M.A.T., J. Wang, J.Y. Tang, and Y.Z. Lee. 2013. Evaluation of α-glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. LWT—Food Science and Technology 53: 492–498.

    CAS  Google Scholar 

  • Saito, N., H. Sakai, H. Sekihara, and Y. Yajima. 1998. Effect of an α-glucosidase inhibitor voglibose, in combination with sulphonilureas, on glycaemic control in type 2 diabetes patients. Journal of International Medical Research 26: 219–232.

    CAS  PubMed  Google Scholar 

  • Slinkard, K., and V.L. Singleton. 1977. Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture 8: 49–55.

    Google Scholar 

  • Stand, E., H.J. Baumgartl, M. Fuchtenbusch, and J. Stemplinger. 1999. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes, Obesity & Metabolism 1: 215–220.

    Article  Google Scholar 

  • Takara, K., K. Otsuka, K. Wada, H. Wasaki, and M. Yamashita. 2007. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity and tyrosinase inhibitory effects of constituents of sugarcane molasses. Bioscience, Biotechnology, and Biochemistry 71: 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Tangphatsornruang, S., M. Naconsie, C. Thammarongtham, and J. Narangajavana. 2005. Isolation and characterization of an α-amylase gene in cassava Manihot esculenta. Plant Physiology and Biochemistry 43: 821–827.

    Article  CAS  PubMed  Google Scholar 

  • van de Laar, F.A. 2008. α-Glucosidase inhibitors in the early treatment of type 2 diabetes. Vascular Health and Risk Management 4: 1189–1195.

    PubMed  PubMed Central  Google Scholar 

  • Wang, B.S., L.W. Chang, Z.C. Kang, H.L. Chu, H.M. Tai, and M.H. Huang. 2011. Inhibitory effects of molasses on mutation and nitric oxide production. Food Chemistry 126: 1102–1107.

    Article  CAS  Google Scholar 

  • Wang, H., Y.J. Du, and M.C. Song. 2010. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chemistry 123: 6–13.

    Article  CAS  Google Scholar 

  • Whetten, R.W., J.J. MacKay, and R.R. Sederoff. 1998. Recent advances in understanding lignin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 49: 585–609.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A.J., A.M. Rimando, W. Fish, S.R. Mentreddy, and S.T. Mathews. 2012. Serviceberry [Amelanchier alnifolia (Nutt.) Nutt.ex. M. Roem (Rosaceae)] leaf extract inhibits mammalian α-glucosidase activity and suppresses postprandial glycemic response in a mouse model of diet-induced obesity and hyperglycemia. Journal of Ethnopharmacology 143: 481–487.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the ministry of science and technology in agriculture science and technology Achievements Transformation Fund Project (No. 2013GB23600669), the Science and Technology Planning Project of Guangdong Province, China (No. 2011B050400035), the Science and Technology Planning Project of Guang Zhou, China (No. 2013J4500036) and the Open Project Program of Provincial Key Laboratory of Green Processing Technology and Product Safety of Natural Products (201303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujuan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Yu, S., Zeng, F. et al. Phenolics Content and Inhibitory Effect of Sugarcane Molasses on α-Glucosidase and α-Amylase In Vitro. Sugar Tech 18, 333–339 (2016). https://doi.org/10.1007/s12355-015-0385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0385-y

Keywords

Navigation