Skip to main content
Log in

Physiological Changes Associated with Antioxidant Enzymes in Response to Sugarcane Tolerance to Water Deficit and Rehydration

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Water deficit is the main limiting factor for sugarcane yield worldwide. Under this stress, the crop develops adaptive mechanisms that participate in maintaining the plants’ water status. A better understanding of these mechanisms may contribute to differentiating tolerant cultivars to be used in genetic improvement programs. Therefore, this study aimed to assess the physiological responses of sugarcane cultivars subjected to water deficit and rehydration. Cultivars RB92579, SP81-3250, SP83-2847 and IAC91-5155 were grown in pots in a greenhouse. These plants were physiologically and biochemically evaluated at three intervals: 0 (before stress), 15 (water deficit) and 27 days (rehydration) after the onset of treatment (DAT) at 85 days after planting. Cultivars RB92579 and SP81-3250 had greater reductions in stem height, number of green leaves, leaf area, relative water content, leaf water potential (Ψw), leaf temperature, stomatal conductance (gs), maximum photochemical efficiency of photosystem II (Fv/Fm), SPAD index and photosynthetic pigments, and inhibited catalase enzyme activity when subjected to water stress. Furthermore, SP81-3250 showed no recovery after rehydration. Water deficit also increased the levels of proline and the enzymes superoxide dismutase and ascorbate peroxidase in all cultivars. We also found increased carbohydrates under stress, except in the cultivar SP81-3250, which had a reduced content. Due to the minor damage caused by drought in the physiology and biochemistry of cultivars SP83-2847 and IAC91-5155, they have higher potential for tolerance and can acclimate to drought. Consequently, oxidative stress can be largely avoided in the chloroplasts of these cultivars by maintaining the balance of antioxidant enzyme activity, photosynthetic efficiency, stomatal control and water status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

C:

Appropriate water regime treatment

Car:

Carotenoids

CAT:

Catalase

Chl a :

Chlorophyll a

Chl b :

Chlorophyll b

Chl total :

Chlorophyll total

Carb:

Carbono

FV/FM :

Maximum photochemical efficiency of photosystem II

Gs:

Stomatal conductance

LT:

Leaf temperature

Prol:

Proline

Prot:

Protein

ROS:

Reactive oxygen species

RWC:

Leaf relative water content

SOD:

Superoxide dismutase

SPAD:

Index estimated chlorophyll contents via SPAD readings

+D:

Water deficit treatment

Ψw:

Leaf water potential

References

  • Amalraj, R.S., N. Selvaraj, G.K. Veluswamy, R.P. Ramanujan, R. Muthurajan, M. Palaniyandi, G.K. Agrawal, R. Rakwal, and R. Viswanathan. 2010. Sugarcane proteomics: Establishment of a protein extraction method for 2-DE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis 31: 1959–1974.

    Article  CAS  PubMed  Google Scholar 

  • Bates, L.S. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, C.O., and I. Fridovich. 1973. Isoenzymes of superoxide dismutase from wheat germ. Biochimica et Biophysica Acta 317: 50–64.

    Article  CAS  PubMed  Google Scholar 

  • Benešová, M., D. Holá, L. Fischer, P.L. Jedelský, F. Hnilička, N. Wilhelmová, O. Rothová, M. Kočová, D. Procházková, J. Honnerová, L. Fridrichová, and H. Hniličková. 2012. The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration. PLoS One 7: 1–17.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chapola, R.G., E.G.D. Santos, J.R.B.F. Rosa, A.R. Fernandes Junior, A.I. Bassinello, M.A.S. Videira, and H.P. Hoffmann. 2009. Censo varietal de cana-de-açúcar do Estado de São Paulo em 2008. STAB Açúcar, Álcool e Subprodutos 27: 36–39.

    Google Scholar 

  • Cha-Um, S., and C. Kirdmanee. 2009. Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress. Agricultural Sciences in China 8: 51–58.

    Article  CAS  Google Scholar 

  • Cia, M.C., A.C.R. Guimarães, L.O. Medici, S.M. Chabregas, and R.A. Azevedo. 2012. Antioxidant responses to water deficit by drought-tolerant and sensitive sugarcane varieties. Annals of Applied Biology 161: 313–324.

    Article  CAS  Google Scholar 

  • Endres, L., J.V. Silva, V.M. Ferreira, and G.V.S. Barbosa. 2010. Photosynthesis and water relations in Brazilian sugarcane. The Open Agriculture Journal 4: 31–37.

    Article  CAS  Google Scholar 

  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.

    Article  CAS  Google Scholar 

  • Efeoğlu, B., Y. Ekmekçi, and N. Çiçek. 2009. Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany 75: 34–42.

    Article  Google Scholar 

  • Gorai, M., A. Hachef, and M. Neffati. 2010. Differential responses in growth and water relationship of Medicago sativa (L.) cv. Gabès and Astragalus gombiformis (Pom.) under water-limited conditions. Emirates Journal of Food and Agriculture 1: 01–12.

    Article  Google Scholar 

  • Gomathi, R., and P. Rakkiyapan. 2011. Comparative lipid peroxida-tion, leaf membrane ther most ability, and antioxidant systemin four sugarcane genotypes differing in salt tolerance. International Journal of Plant Physiology and Biochemistry 3: 67–74.

    CAS  Google Scholar 

  • Graça, J.P., F.A. Rodrigues, J.R.B. Farias, M.C.N. Oliveira, C.B. Hoffmann-Campo, and S.M. Zingaretti. 2010. Physiological parameters in sugarcane cultivars submitted to water deficit. Brazilian Journal of Plant Physiology 22: 189–197.

    Article  Google Scholar 

  • Havir, E.A., and N.A. Mchale. 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology 84: 450–455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayat, S., Q. Hayat, M.N. Alyemeni, A.S. Wani, J. Pichtel, and A. Ahmad. 2012. Role of proline under changing environments—a review. Plant Signaling and Behavior 7: 1456–1466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemaprabha, G., S. Swapna, D.L. Lavanya, B. Sajitha, and S. Venkataramana. 2013. Evaluation of drought tolerance potential of elite genotypes and progenies of sugarcane (Saccharum sp. hybrids). Sugar Tech 15: 9–16.

    Article  CAS  Google Scholar 

  • Hermann, E.R., and G.M.S. Câmara. 1999. Um método simples para estimar a área foliar da cana-de-açúcar. STAB Açúcar, Álcool e Subprodutos 17: 32–34.

    Google Scholar 

  • Inman-Bamber, N.G., and D.M. Smith. 2005. Water relations in sugarcane and response to water deficits. Field Crops Research 92: 185–202.

  • Jangpromma, N., P. Songsri, S. Thammasirirak, and P. Jaisil. 2010a. Rapid assessment of chlorophyll content in sugarcane using a SPAD chlorophyll meter across different water stress conditions. Asian Journal of Plant Sciences 9: 368–374.

    Article  CAS  Google Scholar 

  • Jangpromma, N., S. Kitthaisong, K. Lomthaisong, S. Daduang, P. Jaisil, and S. Thammasirirak. 2010b. Proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugarcane cultivars. American Journal of Biochemistry and Biotechnology 2: 89–102.

    Article  Google Scholar 

  • Koonjah, S.S., S. Walker, A. Singles, R. Van Antwerpen, and A.R. Nayamuth. 2006. A quantitative of water stress effect on sugarcane photosynthesis. Proceedings of the South African Sugar Technologists Association 80: 148–158.

    Google Scholar 

  • Lawlor, D.W., and W. Tezara. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Annals of Botany 103: 561–579.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350–382.

    CAS  Google Scholar 

  • Long, S.P., S. Humphries, and P.G. Falkowski. 1994. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology 45: 633–662.

    Article  CAS  Google Scholar 

  • Maxwell, K., and G.N. Johnson. 2000. Chlorophyll fluorescence—a pratical guide. Journal of Experimental Botany 51: 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Plant Science 7: 405–410.

    Article  CAS  Google Scholar 

  • Molinari, H.B.C., C.J. Marur, E. Daros, M.K.F. Campos, J.F.R.P. Carvalho, J.C. Bespalhok Filho, L.F.P. Pereira, and L.G.E. Vieira. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum 130: 218–229.

    Article  CAS  Google Scholar 

  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-sepecific peroxidase in spinach choloroplasts. Plant and Cell Physiology 22: 867–880.

    CAS  Google Scholar 

  • Noctor, G., and C.H. Foyer. 1998. Ascorbate and Glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Molecular Biology 49: 249–270.

    Article  CAS  Google Scholar 

  • Oliver, M.J., L. Guo, D.C. Alexander, J.A. Ryals, B.W.M. Wone, and J.C. Cushman. 2011. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. The Plant Cell 23: 1231–1248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patade, V.P., S. Bhargava, and P. Suprasanna. 2011. Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: Growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions 6: 275–282.

    Article  CAS  Google Scholar 

  • Pincelli, R.P., and M.A. Silva. 2012. Alterações morfológicas foliares em cultivares de cana-de-açúcar em resposta à deficiência hídrica. Bioscience Journal 28: 546–556.

    Google Scholar 

  • Queiroz, R.J.B., D.M.M. Santos, A.S. Ferraudo, S.D. Carlin, and M.A. Silva. 2011. Biochemical and physiological responses of sugarcane cultivars to soil water deficiencies. Scientia Agricola 68: 469–476.

    Article  Google Scholar 

  • Rasheed, R., A. Wahid, M. Farooq, I. Hussain, and S.M.A. Basra. 2011. Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regulation 65: 35–45.

    Article  CAS  Google Scholar 

  • Rodrigues, F.A., M.L. Laia, and S.M. Zingaretti. 2009. Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Science 176: 286–302.

    Article  CAS  Google Scholar 

  • Sharma, P., A.B. Jha, R.S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012: 1–26.

    Article  Google Scholar 

  • Silva, M.A., J.L. Jifon, V. Sharma, J.A.G. Silva, M.M. Caputo, M.B. Damaj, E.R. Guimarães, and M.I.T. Ferro. 2011. Use of physiological parameters in screening drought tolerance in sugarcane genotypes. Sugar Tech 13: 191–197.

    Article  CAS  Google Scholar 

  • Silva, P.P., L. Soares, J.G. Costa, L.S. Viana, J.C.F. Andrade, E.R. Gonçaves, J.M. Santos, G.V.S.B. Barbosa, V.X. Nascimento, A.R. Todaro, A. Riffel, M.F. Grossi-de-Sa, M.H.P. Barbosa, A.E.G. Sant` Ana, and C.E. Ramalho Neto. 2012. Path analysis for selection of drought tolerant sugarcane genotypes through physiological components. Industrial Crops and Products 37: 11–19.

    Article  Google Scholar 

  • Silva, M.A., J.L. Jifon, J.A.G. Silva, C.M. Santos, and V. Sharma. 2014. Relationships between physiological traits and productivity of sugarcane in response to water deficit. Journal of Agricultural Science 152: 104–118.

    Article  Google Scholar 

  • Smit, M.A., and A. Singels. 2006. The response of sugarcane canopy development to water stress. Field Crops Research 98: 91–97.

    Article  Google Scholar 

  • Srivastava, S., A.D. Pathak, P.S. Gupta, A.K. Shrivastava, and A.K. Srivastava. 2012. Hydrogen peroxide scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. Journal of Environmental Biology 33: 657–661.

    CAS  PubMed  Google Scholar 

  • Taiz, L., and E. Zeiger. 2010. Plant Physiology. Sunderland: Sinauer.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Scientific and Technologist Development Council (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Almeida Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, C.M., de Almeida Silva, M., Lima, G.P.P. et al. Physiological Changes Associated with Antioxidant Enzymes in Response to Sugarcane Tolerance to Water Deficit and Rehydration. Sugar Tech 17, 291–304 (2015). https://doi.org/10.1007/s12355-014-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-014-0325-2

Keywords

Navigation