Skip to main content

Advertisement

Log in

Respiratory motion reduction with a dual gating approach in myocardial perfusion SPECT: Effect on left ventricular functional parameters

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Respiratory motion (RM) complicates the analysis of myocardial perfusion (MP) single-photon emission computed tomography (SPECT) images. The effects of RM on left ventricular (LV) functional variables have not been thoroughly investigated.

Methods and results

Thoracic electrical bioimpedance and electrocardiographic signals were recorded from eighteen patients undergoing the rest phase of a 1-day stress/rest cardiac-gated MP-SPECT examination. The signals and list-mode emission data were retrospectively processed to yield standard cardiac- and dual-gated (respiratory and cardiac gating) image sets applying a novel algorithm. LV volume, MP, shape index (SI), wall motion (WM), wall thickening (WT), and phase analysis parameters were measured with Quantitative Perfusion SPECT/Quantitative Gated SPECT software (Cedars-Sinai Medical Center). Image quality was evaluated by three experienced physicians. Dual gating increased LV volume (77.1 ± 26.8 vs 79.8 ± 27.6 mL, P = .006) and decreased SI (0.57 ± 0.05 vs 0.56 ± 0.05, P = .036) and global WT (39.0 ± 11.8% vs 36.9 ± 9.4%, P = .034) compared to cardiac gating, but did not significantly alter perfusion, WM or phase analysis parameters or image quality (P > .05).

Conclusions

RM reduction has an effect on LV volume, shape, and WT parameters. RM exerts no significant effect on phase analysis parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

LV:

Left ventricular

MP:

Myocardial perfusion

RM:

Respiratory motion

SI:

Shape index

SPECT:

Single-photon emission computed tomography

WM:

Wall motion

WT:

Wall thickening

References

  1. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: Kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 1995;33:713-9.

    Article  CAS  Google Scholar 

  2. Polycarpou I, Chrysanthou-Baustert I, Demetriadou O, Parpottas Y, Panagidis C, Marsden PK, et al Impact of respiratory motion correction on SPECT myocardial perfusion imaging using a mechanically moving phantom assembly with variable cardiac defects. J Nucl Cardiol 2015. doi:10.1007/s12350-015-0323-0.

    Article  PubMed  Google Scholar 

  3. Ko C, Wu Y, Cheng M, Yen R, Wu W, Tzen K. Data-driven respiratory motion tracking and compensation in CZT cameras: A comprehensive analysis of phantom and human images. J Nucl Cardiol 2015;22:308-18.

    Article  Google Scholar 

  4. Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: A review. Semin Nucl Med 2008;38:167-76.

    Article  Google Scholar 

  5. Chan C, Harris M, Le M, Biondi J, Grobshtein Y, Liu Y, et al End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system. Phys Med Biol 2014;59:6267-87.

    Article  Google Scholar 

  6. Qi W, Yang Y, Wernick MN, Pretorius PH, King MA. Limited-angle effect compensation for respiratory binned cardiac SPECT. Med Phys 2016;43:443-54.

    Article  Google Scholar 

  7. Kovalski G, Israel O, Keidar Z, Frenkel A, Sachs J, Azhari H. Correction of heart motion due to respiration in clinical myocardial perfusion SPECT scans using respiratory gating. J Nucl Med 2007;48:630-6.

    Article  Google Scholar 

  8. Dey J, Segars WP, Pretorius PH, Walvick RP, Bruyant PP, Dahlberg S, et al Estimation and correction of cardiac respiratory motion in SPECT in the presence of limited-angle effects due to irregular respiration. Med Phys 2010;37:6453-65.

    Article  Google Scholar 

  9. Abidov A, Slomka PJ, Nishina H, Hayes SW, Kang X, Yoda S, et al Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: Initial description of a new variable. J Nucl Cardiol 2006;13:652-9.

    Article  Google Scholar 

  10. Wakabayashi H, Taki J, Inaki A, Sumiya H, Tsuchiya H, Kinuya S. Assessment of doxorubicin cardiac toxicity using gated 99mTc-hexakis-2-methoxyisobutylisonitrile myocardial single photon emission computed tomography: Wall thickening and motion abnormalities can be an early sign of cardiac involvement. Circ J 2012;76:1190-6.

    Article  CAS  Google Scholar 

  11. Lairez O, Cognet T, Dercle L, Méjean S, Berry M, Bastié D, et al Prediction of all-cause mortality from gated-SPECT global myocardial wall thickening: Comparison with ejection fraction and global longitudinal 2D-strain. J Nucl Cardiol 2014;21:86-95.

    Article  Google Scholar 

  12. Pazhenkottil AP, Buechel RR, Husmann L, Nkoulou RN, Wolfrum M, Ghadri J, et al Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging. Heart 2011;97:33-7.

    Article  Google Scholar 

  13. Bitarafan A, Rajabi H, Gruy B, Rustgou F, Sharafi AA, Firoozabady H, et al Respiratory motion detection and correction in ECG-gated SPECT: A new approach. Korean J Radiol 2008;9:490-7.

    Article  Google Scholar 

  14. Buechel RR, Husmann L, Pazhenkottil AP, Nkoulou R, Herzog BA, Burger IA, et al Myocardial perfusion imaging with real-time respiratory triggering: Impact of inspiration breath-hold on left ventricular functional parameters. J Nucl Cardiol 2010;17:848-52.

    Article  Google Scholar 

  15. Van Kriekinge SD, Nishina H, Ohba M, Berman DS, Germano G. Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: Application to the characterization of ventricular contraction in patients with left bundle branch block. J Nucl Med 2008;49:1790-7.

    Article  Google Scholar 

  16. Koivumäki T, Nekolla SG, Fürst S, Loher S, Vauhkonen M, Schwaiger M, et al An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET. Phys Med Biol 2014;59:6373-85.

    Article  Google Scholar 

  17. Abboud S, Sadeh D. The use of cross-correlation function for the alignment of ECG waveforms and rejection of extrasystoles. Comput Biomed Res 1984;17:258-66.

    Article  CAS  Google Scholar 

  18. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985;BME-32:230-6.

    Article  Google Scholar 

  19. Juni JE, Chen CC. Effects of gating modes on the analysis of left ventricular function in the presence of heart rate variation. J Nucl Med 1988;29:1272-8.

    CAS  PubMed  Google Scholar 

  20. Koivumäki T, Teuho J, Teräs M, Vauhkonen M, Hakulinen MA. A novel respiratory gating method for oncologic positron emission tomography based on bioimpedance approach. Ann Nucl Med 2015;29:351-8.

    Article  Google Scholar 

  21. Liu C, Pierce II LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol 2009;54:7345-62.

    Article  Google Scholar 

  22. Kortelainen MJ, Koivumäki TM, Vauhkonen MJ, Hakulinen MA. Dependence of left ventricular functional parameters on image acquisition time in cardiac-gated myocardial perfusion SPECT. J Nucl Cardiol 2015;22:643-51.

    Article  Google Scholar 

  23. Liu C, Alessio A, Pierce L, Thielemans K, Wollenweber S, Ganin A, et al Quiescent period respiratory gating for PET/CT. Med Phys 2010;37:5037-43.

    Article  Google Scholar 

  24. van Elmpt W, Hamill J, Jones J, De Ruysscher D, Lambin P, Öllers M. Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 2011;38:843-55.

    Article  Google Scholar 

  25. Ashburner J, Friston K. Rigid body registration. In: Statistical parametric mapping: The analysis of functional brain images. London: Academic Press; 2007. p. 49-62.

  26. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med 2000;41:712-9.

    CAS  PubMed  Google Scholar 

  27. Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull 1971;76:378-82.

    Article  Google Scholar 

  28. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su H, et al Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.

    CAS  PubMed  Google Scholar 

  29. Germano G, Erel J, Lewin H, Kavanagh PB, Berman DS. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1997;30:1360-7.

    Article  CAS  Google Scholar 

  30. Taki J, Higuchi T, Nakajima K, Matsunari I, Hwang E, Bunko H, et al Electrocardiographic gated 99mTc-MIBI SPECT for functional assessment of patients after coronary artery bypass surgery: Comparison of wall thickening and wall motion analysis. J Nucl Med 2002;43:589-95.

    PubMed  Google Scholar 

  31. Fritz CO, Morris PE, Richler JJ. Effect size estimates: Current use, calculations, and interpretation. J Exp Psychol Gen 2012;141:2-18.

    Article  Google Scholar 

  32. Bitarafan-Rajabi A, Rajabi H, Rastgou F, Sharafi AA. Effect of respiratory motion on quantitative myocardial gated SPECT: A simulation study. Ann Nucl Med 2009;23:587-93.

    Article  Google Scholar 

  33. Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardiés M, Bax J, et al EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Kuopio University Hospital (VTR, Project 5031351), University of Eastern Finland (The Doctoral Programme in Science, Technology and Computing), and by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research, Project Number 250215). The authors express thanks to Pekka Tiihonen, PhD, for providing the pulse generator for the examinations, Owen Dillon, BSc(Hons), for guidance in the image registration code optimization, and Ewen MacDonald, PharmD, and Gerald Netto, PhD, for linguistic advice.

Disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti J. Kortelainen MSc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kortelainen, M.J., Koivumäki, T.M., Vauhkonen, M.J. et al. Respiratory motion reduction with a dual gating approach in myocardial perfusion SPECT: Effect on left ventricular functional parameters. J. Nucl. Cardiol. 25, 1633–1641 (2018). https://doi.org/10.1007/s12350-017-0844-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-0844-9

Key Words

Navigation