Skip to main content
Log in

Assessment of atherosclerotic plaque calcification using F18-NaF PET-CT

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

The aim of the present study was to evaluate the uptake of F18-NaF by the arterial wall in patients with high cardiovascular (CV) risk profile. The tracer uptake was assessed in relation to gender and the number of CV risk factors.

Methods and Results

25 patients without known CV disease were included and evaluated by PET-CT with F18-NaF: 14 (56%) men and 11 (44%) women. The mean target-to-background ratio (TBR: max SUV/mean blood-pool SUV) but not the corrected uptake per lesion (CUL: max SUV – mean blood-pool SUV) was higher in men than women (TBR: 1.8 ± 0.6 vs 1.7 ± 0.2; P = 0.04; CUL: 0.7 ± 0.3 vs W 0.6 ± 0.1; P = 0.4). Patients with >3 CV risk factors had higher CUL (0.8 ± 0.1 vs 0.6 ± 0.2; P = 0.01) but not TBR (1.8 ± 0.2 vs 1.7 ± 0.6; P = 0.7) than patients with <3 risk factors.

Conclusions

The TBR but not CUL is higher in men than women while the CUL but not TBR is related to the number of CV risk factors. These results are hypothesis—generating and require validation in larger studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

CV:

Cardiovascular

CUL:

Corrected uptake per lesion

F18-FDG:

Fluorine-18 fluoro-deoxy-glucose

F18-NaF:

Fluorine-18 sodium fluoride

PET:

Positron emission computed tomography

ROI:

Region of interest

SUV:

Standardized uptake value

References

  1. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-66.

    Article  CAS  Google Scholar 

  2. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014;114:1867-79.

    Article  CAS  Google Scholar 

  3. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379-89.

    Article  Google Scholar 

  4. Beller GA. Recent advances and future trends in multimodality cardiac imaging. Heart Lung Circ. 2010;19:193-209.

    Article  Google Scholar 

  5. Tahara N, Tahara A, Honda A, Nitta Y, Kodama N, Yamagishi S, et al. Molecular imaging of vascular inflammation. Curr Pharm Des. 2014;20:2439-47.

    Article  CAS  Google Scholar 

  6. Tarkin JM, Rudd JH. Techniques for noninvasive molecular imaging of atherosclerotic plaque. Nat Rev Cardiol. 2015;12:79.

    Article  Google Scholar 

  7. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc. Imaging. 2013;6:1250-9.

    Article  Google Scholar 

  8. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004;45:1816-21.

    PubMed  Google Scholar 

  9. Chen W, Bural GG, Torigian DA, Rader DJ, Alavi A. Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2009;36:144-51.

    Article  Google Scholar 

  10. Wasselius JA, Larsson SA, Jacobsson H. Fdg-accumulating atherosclerotic plaques identified with 18F-FDG-PET/CT in 141 patients. Mol Imaging Biol. 2009;11:455-9.

    Article  Google Scholar 

  11. Sheikine Y, Akram K. Fdg-pet imaging of atherosclerosis: Do we know what we see? Atherosclerosis. 2010;211:371-80.

    Article  CAS  Google Scholar 

  12. Meirelles GS, Gonen M, Strauss HW. 18F-Fdg uptake and calcifications in the thoracic aorta on positron emission tomography/computed tomography examinations: Frequency and stability on serial scans. J Thorac Imaging. 2011;26:54-62.

    Article  Google Scholar 

  13. Hetterich H, Rominger A, Walter L, Habs M, Volpers S, Hacker M, et al. Natural history of atherosclerotic disease progression as assessed by (18)F-FDG PET/CT. Int J Cardiovasc Imaging. 2016;32:49-59.

    Article  Google Scholar 

  14. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51:862-5.

    Article  Google Scholar 

  15. Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: Correlation with atherogenic risk factors. J Nucl Med. 2011;52:362-8.

    Article  Google Scholar 

  16. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: A novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539-48.

    Article  CAS  Google Scholar 

  17. Adamson PD, Vesey AT, Joshi NV, Newby DE, Dweck MR. Salt in the wound: (18)F-fluoride positron emission tomography for identification of vulnerable coronary plaques. Cardiovasc Diagn Ther. 2015;5:150-5.

    PubMed  PubMed Central  Google Scholar 

  18. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet. 2014;383:705-13.

    Article  Google Scholar 

  19. Joshi NV, Vesey A, Newby DE, Dweck MR. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr Cardiol Rep. 2014;16:521.

    Article  Google Scholar 

  20. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315-81.

    Article  Google Scholar 

  21. Derlin T, Toth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride pet, and vascular calcification in atherosclerotic plaque: A dual-tracer PET/CT study. J Nucl Med. 2011;52:1020-7.

    Article  Google Scholar 

  22. Blomberg BA, Thomassen A, de Jong PA, Simonsen JA, Lam MG, Nielsen AL, et al. Impact of personal characteristics and technical factors on quantification of sodium 18F-fluoride uptake in human arteries: Prospective evaluation of healthy subjects. J Nucl Med. 2015;56:1534-40.

    Article  CAS  Google Scholar 

  23. Gottlieb I, Miller JM, Arbab-Zadeh A, Dewey M, Clouse ME, Sara L, et al. The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography. J Am Coll Cardiol. 2010;55:627-34.

    Article  CAS  Google Scholar 

  24. New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 2011;108:1381-91.

    Article  CAS  Google Scholar 

  25. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34:724-36.

    Article  CAS  Google Scholar 

  26. Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K, Kapadia SR, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65:1273-82.

    Article  CAS  Google Scholar 

  27. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. Snm practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813-20.

    Article  Google Scholar 

  28. Chen W, Dilsizian V. Pet assessment of vascular inflammation and atherosclerotic plaques: SUV or TBR? J Nucl Med. 2015;56:503-4.

    Article  CAS  Google Scholar 

  29. Pawade TA, Cartlidge TR, Jenkins WS, Adamson PD, Robson P, Lucatelli C, et al. Optimization and reproducibility of aortic valve 18F-fluoride positron emission tomography in patients with aortic stenosis. Circ Cardiovasc Imaging. 2016. doi:10.1161/CIRCIMAGING.116.005131.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria João Vidigal Ferreira MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.J.V., Oliveira-Santos, M., Silva, R. et al. Assessment of atherosclerotic plaque calcification using F18-NaF PET-CT. J. Nucl. Cardiol. 25, 1733–1741 (2018). https://doi.org/10.1007/s12350-016-0776-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0776-9

Keywords

Navigation