Skip to main content
Log in

PET/MR: Yet another Tesla?

  • Theme Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

After the successful introduction of PET/CT as a multimodality imaging technique, PET/MR has subsequently emerged as an attractive instrumentation for applications in neurology, oncology, and cardiology. Simultaneous data acquisition combining structural, functional, and molecular imaging provides a unique platform to link various aspects of cardiac performance for the non-invasive characterization of cardiovascular disease phenotypes. Specifically, tissue characterization by MR techniques with and without contrast agents allows for functional parameters such as LGE, myocardial perfusion, and T1 maps as well as an estimate of extracellular volume. PET tracers excel by their high sensitivity and specificity, thus supplementing the functional tissue characterization by MRI. Although the clinical applications are yet to be validated , the first experience with PET/MR suggests future applications in the area of vascular imaging (unstable plaque) as well as in the characterization of inflammatory processes involving the heart. Ischemic heart disease can be comprehensively assessed by integrating regional function, perfusion, and viability. Future technical improvements leading to less costly PET/MR instrumentation are necessary to support routine clinical application of this promising technique in cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Farmelo G. The discovery of X-rays. Sci Am 1995;273:86-91.

    Article  CAS  PubMed  Google Scholar 

  2. Kuhl DE, Edwards RQ. Cylindrical and section radioisotope scanning of the liver and brain. Radiology 1964;83:926-36.

    Article  CAS  PubMed  Google Scholar 

  3. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53:R1-39.

    Article  CAS  PubMed  Google Scholar 

  4. Basu S, Alavi A. PET-based personalized management in clinical oncology: An unavoidable path for the foreseeable future. PET Clin 2016;11:203-7.

    Article  PubMed  Google Scholar 

  5. Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ. Combined PET/MR imaging—technology and applications. Technol Cancer Res Treat 2010;9:5-20.

    Article  CAS  PubMed  Google Scholar 

  6. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, et al. First clinical experience with integrated whole-body PET/MR: Comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012;53:845-55.

    Article  PubMed  Google Scholar 

  7. Ziegler SI, Pichler BJ, Boening G, Rafecas M, Pimpl W, Lorenz E, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28:136-43.

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: Evaluation with PET/CT data. J Nucl Med 2009;50:520-6.

    Article  PubMed  Google Scholar 

  9. Inglese E, Leva L, Matheoud R, Sacchetti G, Secco C, Gandolfo P, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT. J Nucl Med 2007;48:1662-9.

    Article  PubMed  Google Scholar 

  10. Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: Feasibility and Initial results. Radiology. 2013;268:366-73.

    Article  PubMed  Google Scholar 

  11. Oldan JD, Shah SN, Brunken RC, DiFilippo FP, Obuchowski NA, Bolen MA. Do myocardial PET-MR and PET-CT FDG images provide comparable information? J Nucl Cardiol 2015. doi:10.1007/s12350-015-0159-7.

  12. Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: Comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging 2015;42:1574-80.

    Article  PubMed  Google Scholar 

  13. Lau JM, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, et al. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol 2015. doi:10.1007/s12350-015-0197-1.

  14. Rauscher I, Eiber M, Furst S, Souvatzoglou M, Nekolla SG, Ziegler SI, et al. PET/MR imaging in the detection and characterization of pulmonary lesions: Technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med 2014;55:724-9.

    Article  CAS  PubMed  Google Scholar 

  15. Marshall HR, Prato FS, Deans L, Theberge J, Thompson RT, Stodilka RZ. Variable lung density consideration in attenuation correction of whole-body PET/MRI. J Nucl Med 2012;53:977-84.

    Article  PubMed  Google Scholar 

  16. Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phy 2010;37:2804-12.

    Article  Google Scholar 

  17. Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging 2013;32:237-46.

    Article  PubMed  Google Scholar 

  18. Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: Frequency, effects, and potential solutions. J Nucl Med 2007;48:188-93.

    PubMed  Google Scholar 

  19. DiFilippo FP, Brunken RC. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med 2005;46:436-43.

    PubMed  Google Scholar 

  20. Buchbender C, Hartung-Knemeyer V, Forsting M, Antoch G, Heusner TA. Positron emission tomography (PET) attenuation correction artefacts in PET/CT and PET/MRI. Br J Radiol 2013;86:20120570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, et al. Motion correction strategies for integrated PET/MR. J Nucl Med 2015;56:261-9.

    Article  PubMed  Google Scholar 

  22. Chun SY, Reese TG, Ouyang JS, Guerin B, Catana C, Zhu XP, et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med 2012;53:1284-91.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim RJ, Chen E-L, Lima JAC, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 1996;94:3318-26.

    Article  CAS  PubMed  Google Scholar 

  24. Mewton N, Liu CY, Croisille P, Bluemke D, Lima J. Assessment of myocardial fibrosis with cardiac magnetic resonance. J Am Coll Cardiol 2011;57:891-903.

    Article  PubMed  Google Scholar 

  25. Arheden H, Saeed M, Higgins CB, D-w Gao, Bremerich J, Wyttenbach R, et al. Measurement of the gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: Comparison with 99m Tc-DTPA autoradiography in rats. Radiology 1999;211:698-708.

    Article  CAS  PubMed  Google Scholar 

  26. Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436-41.

    Article  PubMed  Google Scholar 

  27. Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: Initial clinical experience. J Cardiovasc Magn Reson 2012;14:64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: Evaluation of an automated method. J Cardiovasc Magn Reson 2012;14:64.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Higgins DM, Ridgway JP, Radjenovic A, Sivananthan UM, Smith MA, Higgins DM, et al. T1 measurement using a short acquisition period for quantitative cardiac applications. Med Phys 2005;32:1738-46.

    Article  Google Scholar 

  31. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141-6.

    Article  PubMed  Google Scholar 

  32. Kellman P, Hansen MS. T1-mapping in the heart: Accuracy and precision. J Cardiovasc Magn Reson 2014;16:2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circulation 2013;6:373-83.

    PubMed  Google Scholar 

  34. Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 2012;14:88.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014;71:549-74.

    Article  CAS  PubMed  Google Scholar 

  36. Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging 2013;6:1056-65.

    Article  PubMed  Google Scholar 

  37. aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: Quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015;16:210-6.

  38. Hosch W, Bock M, Libicher M, Ley S, Hegenbart U, Dengler TJ, et al. MR-relaxometry of myocardial tissue: Significant elevation of T1 and T2 relaxation times in cardiac amyloidosis. Invest Radiol 2007;42:636-42.

    Article  PubMed  Google Scholar 

  39. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, et al. T(1) mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013;6:1048-58.

    Article  PubMed  Google Scholar 

  40. Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, et al. T(1) mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013;6:637-45.

    Article  PubMed  Google Scholar 

  41. Pennell DJ, Udelson JE, Arai AE, Bozkurt B, Cohen AR, Galanello R, et al. Cardiovascular function and treatment in beta-thalassemia major: A consensus statement from the American Heart Association. Circulation 2013;128:281-308.

    Article  CAS  PubMed  Google Scholar 

  42. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013;62:1639-53.

    Article  PubMed  Google Scholar 

  43. Waller AH, Blankstein R, Kwong RY, Di Carli MF. Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography. Curr Cardiol Rep 2014;16:483.

    Article  PubMed  PubMed Central  Google Scholar 

  44. deKemp RA, Renaud JM, Klein R, Beanlands RS. Radionuclide tracers for myocardial perfusion imaging and blood flow quantification. Cardiol Clin 2016;34:37-46.

  45. Schwaiger M, Hutchins G. Quantification of regional myocardial perfusion by PET: Rationale and first clinical results. Eur Heart J 1995;16 Suppl J:84-91.

  46. Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging 2015;16:900-9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: Flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol 2013;61:469-77.

    Article  CAS  PubMed  Google Scholar 

  48. Fiechter M, Gebhard C, Ghadri JR, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Myocardial perfusion imaging with 13N-ammonia PET is a strong predictor for outcome. Int J Cardiol 2013;167:1023-6.

    Article  PubMed  Google Scholar 

  49. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease. J Am Coll Cardiol 2012;60:1546-55.

    Article  PubMed  Google Scholar 

  50. Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: Microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging 2012;5:154-66.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Klitzman B, Duling BR. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 1979;237:H481-90.

    CAS  PubMed  Google Scholar 

  52. Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Investig Radiol 1983;18:94-9.

    Article  CAS  Google Scholar 

  53. Sourbron SP, Buckley DL. On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 2011;66:735-45.

    Article  PubMed  Google Scholar 

  54. Alessio AM, Bassingthwaighte JB, Glenny R, Caldwell JH. Validation of an axially distributed model for quantification of myocardial blood flow using 13N-ammonia PET. J Nucl Cardiol 2013;20:64-75.

    Article  PubMed  Google Scholar 

  55. Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 2002;29:886-97.

    Article  PubMed  Google Scholar 

  56. Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 1998;25:73-84.

    Article  CAS  PubMed  Google Scholar 

  57. Broadbent DA, Biglands JD, Larghat A, Sourbron SP, Radjenovic A, Greenwood JP, et al. Myocardial blood flow at rest and stress measured with dynamic contrast-enhanced MRI: Comparison of a distributed parameter model with a fermi function model. Magn Reson Med 2013;70:1591-7.

    Article  CAS  PubMed  Google Scholar 

  58. Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: Estimating perfusion and capillary permeability. Phys Med Biol 2012;57:R1-33.

    Article  CAS  PubMed  Google Scholar 

  59. Bax JJ, Delgado V. Myocardial viability as integral part of the diagnostic and therapeutic approach to ischemic heart failure. J Nucl Cardiol 2015;22:229-45.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314(14):884-8.

    Article  CAS  PubMed  Google Scholar 

  61. Nensa F, Poeppel T, Tezgah E, Heusch P, Nassenstein K, Mahabadi AA, et al. Integrated FDG PET/MR imaging for the assessment of myocardial salvage in reperfused acute myocardial infarction. Radiology 2015;276:400-7.

    Article  PubMed  Google Scholar 

  62. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging 2016;9:e004316.

    PubMed  PubMed Central  Google Scholar 

  63. Bulluck H, White SK, Frohlich GM, Casson SG, O’Meara C, Newton A, et al. Quantifying the area at risk in reperfused ST-segment-elevation myocardial infarction patients using hybrid cardiac positron emission tomography-magnetic resonance imaging. Circ Cardiovasc Imaging 2016;9:e003900.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schwaiger M. Combined positron emission tomography and magnetic resonance as translational tool in cardiology. Circ Cardiovasc Imaging 2016;9:e004549.

    Article  PubMed  Google Scholar 

  65. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014;114:1852-66.

    Article  CAS  PubMed  Google Scholar 

  66. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012;32:2045-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Treiman GS, McNally JS, Kim SE, Parker DL. Correlation of carotid intraplaque hemorrhage and stroke using 1.5 and 3 T MRI. Magn Reson Insights 2015;8:1-8.

  68. Tarkin JM, Dweck MR, Evans NR, Takx RA, Brown AJ, Tawakol A, et al. Imaging atherosclerosis. Circ Res 2016;118:750-69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262-75.

    Article  CAS  PubMed  Google Scholar 

  70. Moody AR, Murphy RE, Morgan PS, Martel AL, Delay GS, Allder S, et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation 2003;107:3047-52.

    Article  PubMed  Google Scholar 

  71. Saam T, Hetterich H, Hoffmann V, Yuan C, Dichgans M, Poppert H, et al. Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. J Am Coll Cardiol 2013;62:1081-91.

    Article  PubMed  Google Scholar 

  72. Parmar JP, Rogers WJ, Mugler JP 3rd, Baskurt E, Altes TA, Nandalur KR, et al. Magnetic resonance imaging of carotid atherosclerotic plaque in clinically suspected acute transient ischemic attack and acute ischemic stroke. Circulation 2010;122:2031-8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014;383:705-13.

    Article  PubMed  Google Scholar 

  74. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin alphavbeta3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging 2014;7:178-87.

    Article  PubMed  Google Scholar 

  75. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013;339:161-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007;204:3037-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wollenweber T, Roentgen P, Schafer A, Schatka I, Zwadlo C, Brunkhorst T, et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging 2014;7:811-8.

    Article  PubMed  Google Scholar 

  78. Nensa F, Tezgah E, Schweins K, Goebel J, Heusch P, Nassenstein K et al. Evaluation of a low-carbohydrate diet-based preparation protocol without fasting for cardiac PET/MR imaging. J Nucl Cardiol 2016.

  79. de Gaetano M, Crean D, Barry M, Belton O. M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol 2016;7:275. doi:10.3389/fimmu.2016.00275.

    Article  PubMed  PubMed Central  Google Scholar 

  80. van Duijnhoven SM, Robillard MS, Hermann S, Kuhlmann MT, Schafers M, Nicolay K, et al. Imaging of MMP activity in postischemic cardiac remodeling using radiolabeled MMP-2/9 activatable peptide probes. Mol Pharm 2014;11:1415-23.

    Article  PubMed  Google Scholar 

  81. Sherif HM, Saraste A, Nekolla SG, Weidl E, Reder S, Tapfer A, et al. Molecular imaging of early alphavbeta3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med 2012;53:318-23.

    Article  CAS  PubMed  Google Scholar 

  82. Rischpler C, Nekolla SG, Kossmann H, Dirschinger RJ, Schottelius M, Hyafil F, et al. Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. J Nucl Cardiol 2016;23:131-3.

    Article  PubMed  Google Scholar 

  83. Sharma OP, Maheshwari A, Thaker K. Myocardial sarcoidosis. Chest 1993;103:253-8.

    Article  CAS  PubMed  Google Scholar 

  84. Vignaux O, Dhote R, Duboc D, Blanche P, Dusser D, Weber S, et al. Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis—A 1-year follow-up study. Chest 2002;122:1895-901.

    Article  PubMed  Google Scholar 

  85. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;63:329-36.

    Article  PubMed  Google Scholar 

  86. Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 2008;35:933-41.

    Article  PubMed  Google Scholar 

  87. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: First clinical experience of simultaneous positron emission tomography-magnetic resonance imaging for the diagnosis of cardiac disease. Circulation 2013;127:e639-41.

    Article  PubMed  Google Scholar 

  88. Higuchi T, Schwaiger M. Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep 2006;8:131-8.

    Article  PubMed  Google Scholar 

  89. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212-21.

    Article  PubMed  Google Scholar 

  90. Lautamaki R, Sasano T, Higuchi T, Nekolla SG, Lardo AC, Holt DP, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med 2015;56:457-63.

    Article  PubMed  Google Scholar 

  91. Choi EK, Chen PS. Is the atrial neural plexis a therapeutic target in atrial fibrillation? Methodist Debakey Cardiovasc J 2015;11:82-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

Markus Schwaiger received research grants from the European Union Seventh Framework Program (FP7) under Grant Agreement No. 294582 ERC Grant MUMI, the Deutsche Forschungsgemeinschaft (DFG) under Grant Agreement No. SFB 824, as well as from Siemens Healthcare. Stephan G. Nekolla received research grants from the Deutsche Forschungsgemeinschaft (DFG) under Grant Agreement No. 614791, as well as from Siemens Healthcare. The other authors declare that they have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schwaiger MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwaiger, M., Kunze, K., Rischpler, C. et al. PET/MR: Yet another Tesla?. J. Nucl. Cardiol. 24, 1019–1031 (2017). https://doi.org/10.1007/s12350-016-0665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0665-2

Keywords

Navigation