Skip to main content
Log in

Twelfth annual Mario S. Verani, MD memorial lecture: Vision, leadership, and change—A reflection on the challenges and opportunities in the community-based practice of nuclear cardiology

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Zaret BL, Strauss HW, Martin ND, Wells HP, Flamm MD. Noninvasive regional myocardial perfusion with radioactive potassium. Study of patients at rest, with exercise and during angina pectoris. N Engl J Med 1973;288:809-12.

    Article  CAS  PubMed  Google Scholar 

  2. Murphy ML, Hultgren HN, Detre K, Thomsen J, Takaro T. Treatment of chronic stable angina. A preliminary report of survival data of the randomized Veterans Administration cooperative study. N Engl J Med 1977;297:621-7.

    Article  CAS  PubMed  Google Scholar 

  3. Takaro T, Peduzzi P, Detre KM, Detre KM, Hultgren HN, Murphy ML, Van der Bel-Kahn J, et al. Survival in subgroups of patients with left main coronary artery disease. Veterans Administration Cooperative Study of Surgery for Coronary Arterial Occlusive Disease. Circulation 1982;66:14-22.

    Article  CAS  PubMed  Google Scholar 

  4. The Veterans Administration Coronary Artery Bypass Surgery Cooperative Study Group. Eleven-year survival in the Veterans Administration randomized trial of coronary bypass surgery for stable angina. N Engl J Med 1984;311:1333-9.

    Article  Google Scholar 

  5. Varnauskas E. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N Engl J Med 1988;319:332-7.

    Article  CAS  PubMed  Google Scholar 

  6. Anger HO. Scintillation camera. Rev Sci Instrum 1958;29:27-33.

    Article  CAS  Google Scholar 

  7. Tapscott E. Nuclear medicine pioneer, Hal O. Anger, 1920-2005. J Nucl Med Technol 2005;33:250-3.

    PubMed  Google Scholar 

  8. Jain A, Mahmarian JJ, Borges-Neto S, Johnston DL, Cashion WR, Lewis JM, et al. Clinical significance of perfusion defects by thallium-201 single photon emission tomography following oral dipyridamole early after coronary angioplasty. J Am Coll Cardiol 1988;11:970-6.

    Article  CAS  PubMed  Google Scholar 

  9. Stratman HG, Mark AL, Walter KE, Fletcher JW, Williams GA. Atrial pacing and thallium 201 scintigraphy: Combined use for diagnosis of coronary artery disease. Angiology 1987;11:807-14.

    Article  Google Scholar 

  10. Bateman TM, Thomas GS. Challenges and strategies in the provision of high-quality nuclear cardiology imaging services in office-based nuclear cardiology. J Nucl Cardiol 2004;11:245-52.

    Article  PubMed  Google Scholar 

  11. Wackers FJTh, Leppo JA. The origins and early years of the American Society of Nuclear Cardiology. J Nucl Cardiol 2013;20:6-16.

    Article  PubMed  Google Scholar 

  12. Wackers FJTh. Blueprint of the accreditation program of the Intersocietal Commission for the Accreditation of Nuclear Medicine Laboratories. J Nucl Cardiol 1999;6:372-4.

    Article  CAS  PubMed  Google Scholar 

  13. Wackers FJTh, Bateman TM. Blue print of the certification examination in nuclear cardiology. J Nucl Cardiol 1997;4:164-8.

    Article  CAS  PubMed  Google Scholar 

  14. Ritchie JL, Gibbons RJ, Johnson LJ, Maddahi J, Schelbert HR, Frans JT, et al. Task Force 5: Training in nuclear cardiology. J Am Coll Cardiol 1995;25:19-23.

    Article  CAS  PubMed  Google Scholar 

  15. DePuey E, Borer J, Brown K, Cerqueira MD, LaManna M, Moore WH, et al. Cardiovascular nuclear medicine training guidelines. J Nucl Med 1994;35:169-78.

    CAS  PubMed  Google Scholar 

  16. Cerqueira MD, Wackers FJT. The knowledge base for nuclear cardiology training. J Nucl Cardiol 1994;1:114-6.

    Article  CAS  PubMed  Google Scholar 

  17. Golub RJ, McCMlan JR, Herman SD, Travin MI, Kline GM, Aitken PW, et al. Effectiveness of nuclear training guidelines: A comparison of trainees with experienced readers. J Nucl Cardiol 1996;3:114-8.

    Article  CAS  PubMed  Google Scholar 

  18. Sorrell VL, Reeves WC. Who is interpreting nuclear cardiology studies in the United States, and what are the requirements for privileges? A national survey of institutional policies from 80 major medical centers. J Nucl Cardiol 1997;4:309-15.

    Article  CAS  PubMed  Google Scholar 

  19. Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 2009;361:849-57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chen J, Einstein AJ, Fazel R, Krumholz HM, Wang Y, Ross JS, et al. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: A population-based analysis. J Am Coll Cardiol 2010;56:702-11.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Berrington de Gonzalez A, Kim KP, Smith-Bindman R, McAreavey D. Myocardial perfusion scans: Projected population cancer risks from current levels of use in the United States. Circulation 2010;122:2403-10.

    Article  PubMed  Google Scholar 

  22. Einstein AJ, Weiner SD, Bernheim A, Kulon M, Bokhari S, Johnson LL, et al. Multiple testing, cumulative radiation dose, and clinical indications in patients undergoing myocardial perfusion imaging. JAMA 2010;304:2137-44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ficaro EP, Zanzonico P, Stabin MG, Raff GL, Thompson RC, Einstein AJ, et al. ASNC Announcement of On-Line Statement: Variability in radiation dose estimates from nuclear and computed tomography diagnostic imaging. J Nucl Cardiol 2009;16:161.

    Article  Google Scholar 

  24. Fazel R, Dilsizian V, Einstein AJ, Ficaro EP, Henzlova M, Shaw LJ. Strategies for defining an optimal risk-benefit ratio for stress myocardial perfusion SPECT. J Nucl Cardiol 2011;18:385-92.

    Article  PubMed  Google Scholar 

  25. Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. ASNC information statement: Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709-18.

    Article  PubMed  Google Scholar 

  26. Einstein AJ, Tilkemeier P, Fazel R, Rakotoarivelo H, Shaw LJ, American Society of Nuclear Cardiology. Radiation safety in nuclear cardiology-current knowledge and practice: Results from the 2011 American Society of Nuclear Cardiology member survey. JAMA Intern Med 2013;173:1021-3.

    Article  PubMed  Google Scholar 

  27. Douglas PS, Carr JJ, Cerqueira MD, Cummings JE, Gerber TC, Mukherjee D, et al. Developing an action plan for patient radiation safety in adult cardiovascular medicine: Proceedings from the Duke University Clinical Research Institute/American College of Cardiology Foundation/American Heart Association think tank held on February 28, 2011. J Am Coll Cardiol 2012;59:1833-47.

    Article  PubMed  Google Scholar 

  28. Tilkemeier P, Wang TY, Lytle BL, Denton EA. ASNC ImageGuide™: Cardiovascular imaging data registry. J Am Coll Cardiol 2013;20:1186-7.

    Google Scholar 

  29. Patil HR, Bateman TM, McGhie AI, Burgett EV, Courter SA, Case JA, et al. Diagnostic accuracy of high-resolution attenuation-corrected Anger-camera SPECT in the detection of coronary artery disease. J Nucl Cardiol 2014;21:121-34.

    Article  Google Scholar 

  30. Gibson PB, Demus D, Noto R, Hudson W, Johnson LL. Low event rate for stress-only perfusion imaging in patients evaluated for chest pain. J Am Coll Cardiol 2002;39:999-1004.

    Article  PubMed  Google Scholar 

  31. Duvall WL, Wijetunga MN, Klein TM, Razzouk L, Godbold J, Croft LB, et al. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study. J Nucl Cardiol 2010;17:370-7.

    Article  PubMed  Google Scholar 

  32. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221-30.

    Article  PubMed  Google Scholar 

  33. Duvall WL, Wijetunga MN, Klein TM, Hingorani R, Bewley B, Khan SM, et al. Stress-only Tc-99m myocardial perfusion imaging in an emergency department chest pain unit. J Emerg Med 2011;42:642-50.

    Article  PubMed  Google Scholar 

  34. Duvall WL, Baber U, Levine E, Croft L, Henzlova M. A model for the prediction of a successful stress-first Tc-99m SPECT MPI. J Nucl Cardiol 2012;19:1124-34.

    Article  PubMed  Google Scholar 

  35. Mathur S, Heller GV, Bateman TM, Ruffin R, Yekta A, Katten D, et al. Clinical value of stress-only Tc-99m SPECT imaging: Importance of attenuation correction. J Nucl Cardiol 2013;20:27-37.

    Article  PubMed  Google Scholar 

  36. Gemignani AS, Muhlebach SG, Abbott BG, Roye GD, Harrington DT, Arrighi JA. Stress-only or stress/rest myocardial perfusion imaging in patients undergoing evaluation for bariatric surgery. J Nucl Cardiol 2011;18:886-92.

    Article  PubMed  Google Scholar 

  37. Heller GV, Bateman TM, Johnson LL, Cullom SJ, Case JA, Galt JR, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273-81.

    Article  PubMed  Google Scholar 

  38. Thompson RC, Heller GV, Johnson LL, Case JA, Cullom SJ, Moutray KL, et al. Value of attenuation correction on ECG-gated SPECT myocardial perfusion imaging related to body mass index. J Nucl Cardiol 2005;12:195-202.

    Article  PubMed  Google Scholar 

  39. Duvall WL, Sweeny JM, Croft LB, Ginsberg E, Guma KA, Henzlova MJ. Reduced stress dose with rapid acquisition CZT SPECT MPI in a non-obese clinical population: Comparison to coronary angiography. J Nucl Cardiol 2012;19:19-27.

    Article  PubMed  Google Scholar 

  40. Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: Initial experience with a CZT SPECT camera. J Nucl Cardiol 2010;17:1009-14.

    Article  PubMed  Google Scholar 

  41. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.

    Article  PubMed  Google Scholar 

  42. DePuey EG, Ata P, Wray R, Friedman M. Very low-activity stress/high-activity rest, single-day myocardial perfusion SPECT with a conventional sodium iodide camera and wide beam reconstruction processing. J Nucl Cardiol 2012;19:931-44.

    Article  PubMed  Google Scholar 

  43. Duvall WL, Guma KA, Kamen J, Croft LB, Parides M, George T, et al. Reduction in occupational and patient radiation exposure from myocardial perfusion imaging: Impact of stress-only imaging and high-efficiency SPECT camera technology. J Nucl Med 2013;54:1251-7.

    Article  PubMed  Google Scholar 

  44. Mouden M, Timmer J, Ottervanger J, Reiffers S, Oostdijk AJ, Knollema S, et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: Fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging 2012;39:1048-55.

    Article  PubMed  Google Scholar 

  45. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol 2010;56:1914-21.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Rozanski A, Gransar H, Hayes SW, Min J, Friedman JD, Thomson LE, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol 2013;61:1054-65.

    Article  PubMed  Google Scholar 

  47. Bateman TM, McGhie A, Courter S, Burgett EV, Cullom SJ, Case J. Prospective study of ultra-low dose stress-only solid-state SPECT: Comparison of efficiency, dosimetry and outcomes versus traditional-dose attenuation-corrected stress-only Anger SPECT (NCT01373944). J Am Coll Cardiol 2012;59:E1316.

    Article  Google Scholar 

  48. Bybee KA, Lee J, Markiewicz R, Longmore R, McGhie AI, O’Keefe JH, et al. Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial perfusion stress imaging. J Nucl Cardiol 2010;17:188-96.

    Article  PubMed  Google Scholar 

  49. Bateman TM, Heller GV, McGhie AI, Courter SA, Golub RA, Case JA, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2009;16:726-35.

    Article  PubMed  Google Scholar 

  50. McArdle BA, Dowsley TF, de Kemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease: A systematic review and meta-analysis. J Am Coll Cardiol 2012;60:1828-37.

    Article  Google Scholar 

  51. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: A bivariate meta-analysis. Circ Cardiovasc Imaging 2012;5:700-7.

    Article  PubMed  Google Scholar 

  52. Sampson UK, Dorbala S, Limaye A, Kwong R, DiCarli M. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052-8.

    Article  CAS  PubMed  Google Scholar 

  53. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of N13-ammonia myocardial perfusion positron emission tomography: Added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.

    Article  PubMed  Google Scholar 

  54. Ziadi MC, de Kemp RA, Williams KA, Chow BJ, Renaud JM, Ruddy TD, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8.

    Article  PubMed  Google Scholar 

  55. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with non-invasive measures of coronary flow reserve. Circulation 2011;124:2215-24.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve associates with adverse cardiovascular events independently of luminal angiographic severity, and modifies the effect of early revascularization. Circulation 2015;131:19-27.

    Article  PubMed  Google Scholar 

  57. Ziadi MC, Williams K, Guo A, Renaud JM, Chow BJ, Klein R, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80.

    Article  PubMed  Google Scholar 

  58. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 2012;126:1858-68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Farhad H, Dunet V, Bachelard K, Allenbach G, Kaufmann PA, Prior JO. Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging. Eur Heart J Cardiovasc Imaging 2013;14:1203-10.

    Article  PubMed  Google Scholar 

  60. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med 2014;55:248-55.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Dorbala S, et al. Coronary vascular dysfunction and prognosis in patients with chronic kidney disease. J Am Coll Cardiol Imaging 2012;5:1025-34.

    Article  Google Scholar 

  62. McCardle BA, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ Cardiovasc Imaging 2014;7:930-7.

    Article  Google Scholar 

  63. Sunderland JJ, Pan X-B, Declerck J, Menda Y. Dependency of cardiac rubidium-82 imaging quantitative measures on age, gender, vascular territory, and software in a cardiovascular normal population. J Nucl Cardiol 2015;22:72-84.

    Article  PubMed  Google Scholar 

  64. Bateman TM, Case JA. Variability in normal myocardial blood flow measurements: Physiologic, methodologic, or protocol related? J Nucl Cardiol 2015;22:85-8.

    Article  PubMed  Google Scholar 

  65. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13 N-ammonia PET. J Nucl Med 2009;50:1062-71.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Manabe O, Yoshinaga K, Katoh C, Naya M, deKemp RA, Tamaki N. Repeatability of rest and hyperemic myocardial blood flow measurements with Rb82 dynamic PET. J Nucl Med 2009;50:68-71.

    Article  PubMed  Google Scholar 

  67. Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.

    Article  PubMed  Google Scholar 

  68. Efseaff M, Klein R, Ziadi MC, Beanlands RS, deKemp RA. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol 2012;19:997-1006.

    Article  PubMed  Google Scholar 

  69. Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: Clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39:1037-47.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013;54:571-7.

    Article  CAS  PubMed  Google Scholar 

  71. Tahari AK, Lee A, Rajaram M, Fukushima K, Lodge MA, Lee BC, et al. Absolute myocardial flow quantification with (82)Rb PET/CT: Comparison of different software packages and methods. Eur J Nucl Med Mol Imaging 2014;41:126-35.

    Article  PubMed  Google Scholar 

  72. Murthy VL, Lee BC, Sitek A, Naya M, Moody J, Polavarapu V, et al. Comparison and prognostic validation of multiple methods of quantification of myocardial blood flow with 82Rb PET. J Nucl Med 2014;55:1952-8.

    Article  CAS  PubMed  Google Scholar 

  73. Nesterov SV, Deshayes E, Sciagra R, Settimo L, Declerck JM, Pan XB, et al. Quantification of myocardial blood flow in absolute terms using Rb-82 PET imaging: The RUBY-10 Study. J Am Coll Cardiol Imaging 2014;7:1119-27.

    Article  Google Scholar 

  74. Blankstein R, Osborne M, Naya M, Kim C, Murthy V, Kwong R, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;63:329-36.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: Increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol 2013;61:2374-82.

    Article  PubMed  Google Scholar 

  76. Kim J, Feller ED, Chen W, Dilsizian V. FDG PET/CT imaging for LVAD associated infections. J Am Coll Cardiol Imaging 2014;7:839-42.

    Article  Google Scholar 

  77. Patil HR, Abdallah M, Bateman TM. Correlates between camera age, patient volume, and laboratory accreditation: A snapshot of equipment utilization in the practice of nuclear cardiology in the U.S. J Nucl Med 2013;54:156.

    Google Scholar 

Download references

Disclosure

Dr. Bateman receives royalties from sales of ExSPECT II attenuation correction software, and from sales of ImagenPro/MD/Q/3D PET software. He has received research grants from Astellas, Bracco, GE, Philips, and Spectrum-Dynamics. He has been on advisory boards for Astellas, Bracco, Jubilant-Drax Image, Fluoropharma, GE, Lantheus and Spectrum-Dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Bateman MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bateman, T.M. Twelfth annual Mario S. Verani, MD memorial lecture: Vision, leadership, and change—A reflection on the challenges and opportunities in the community-based practice of nuclear cardiology. J. Nucl. Cardiol. 22, 435–449 (2015). https://doi.org/10.1007/s12350-015-0126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0126-3

Keywords

Navigation