Skip to main content
Log in

Planar radionuclide angiography with a dedicated cardiac SPECT camera

Journal of Nuclear Cardiology Aims and scope

Abstract

Background

We compared a dedicated cardiac camera with a traditional system for left ventricular (LV) functional measurements using gated blood-pool imaging.

Methods

24-frame gated planar images were obtained from 48 patients in an LAO orientation for 6M counts/view on a standard gamma camera. Immediately thereafter, 24-frame ECG-gated data were obtained for 8 minutes on a dedicated cardiac SPECT camera. The gated SPECT image volumes were iteratively reconstructed and then transferred offline. In-house software was used to reproject the images into a 24-frame gated planar format. Both the original and the reprojected gated planar datasets were analyzed using semiautomated software to determine ejection fraction (EF), ventricular volume (end diastolic volume, EDV), peak ejection rate (PER), and peak filling rate (PFR).

Results

The difference in EF values averaged 0.4% ± 4.4%. The correlation in EF was r ≥ 0.94 (P < .01) with a linear regression slope of 0.98. Correlation of the EDV was r ≥ 0.86 (P < .01), but the volumes from the dedicated cardiac camera were smaller (linear regression slope was 0.6). Correlation of PFR and PER were r = 0.91 and r ≥ 0.83, respectively (P < .01 for both).

Conclusions

Reprojection of 24-frame gated blood-pool SPECT images is an effective means of obtaining LV functional measurements with a dedicated cardiac SPECT camera using standard 2D-planar analysis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255-76.

    Article  PubMed  Google Scholar 

  2. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210-7.

    Article  PubMed  Google Scholar 

  3. Schillaci O, Danieli R. Dedicated cardiac cameras: a new option for nuclear myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2010;37:1706-9.

    Article  PubMed  Google Scholar 

  4. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54:2635-49.

    Article  PubMed  Google Scholar 

  5. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.

    Article  PubMed  Google Scholar 

  6. Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 2008;1:156-63.

    Article  PubMed  Google Scholar 

  7. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.

    Article  PubMed  Google Scholar 

  8. Berman DS, Kang X, Tamarappoo B, Wolak A, Hayes SW, Nakazato R, et al. Stress thallium-201/rest technetium-99m Sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2009;2:273-82.

    Article  PubMed  Google Scholar 

  9. Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.

    Article  PubMed  Google Scholar 

  10. Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.

    Article  PubMed  Google Scholar 

  11. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.

    Article  PubMed  Google Scholar 

  12. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: Quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.

    Article  PubMed  Google Scholar 

  13. Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 2010;37:1710-21.

    Article  PubMed  Google Scholar 

  14. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, et al. Quality assurance committee of the american society of nuclear cardiology. Equilibrium radionuclide angiocardiography. J Nucl Cardiol 2006;13:e56-79.

    Article  PubMed  Google Scholar 

  15. De Bondt P, De Winter O, Vandenberghe S, Vandevijver F, Segers P, Bleukx A, et al. Accuracy of commercially available processing algorithms for planar radionuclide ventriculography using data for a dynamic left ventricular phantom. Nucl Med Commun 2004;25:1197-202.

    Article  PubMed  Google Scholar 

  16. Massardo T, Gal RA, Grenier RP, Schmidt DH, Port SC. Left ventricular volume calculation using a count-based ratio method applied to multigated radionuclide angiography. J Nucl Med 1990;31:450-6.

    PubMed  CAS  Google Scholar 

  17. Daou D, Harel F, Helal BO, Fourme T, Colin P, Lebtahi R, et al. Electrocardiographically gated blood-pool SPECT and left ventricular function: Comparative value of 3 methods for ejection fraction and volume estimation. J Nucl Med 2001;42:1043-9.

    PubMed  CAS  Google Scholar 

  18. Kritzman JN, Corbett JR, Ficaro EP. Comparison of diastolic function parameter estimates from planar and SPECT blood pool imaging. J Nucl Cardiol 2004;11:S7.

    Article  Google Scholar 

  19. Daou D. SPECT radionuclide angiography: It is time for a consensus statement. Eur J Nucl Med Mol Imaging 2007;34:1729-34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Patti Irvine, Lyanne Fuller, and the staff in Cardiac Imaging at the University of Ottawa Heart Institute for their assistance. This research was supported in part by the Grant #NA6939 from the Heart and Stroke Foundation of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Glenn Wells PhD, FCCPM.

Additional information

See related editorial, doi:10.1007/s12350-013-9698-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, R.G., Marvin, B., Kovalski, G. et al. Planar radionuclide angiography with a dedicated cardiac SPECT camera. J. Nucl. Cardiol. 20, 358–366 (2013). https://doi.org/10.1007/s12350-013-9674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-013-9674-6

Keywords

Navigation