Skip to main content

Advertisement

Log in

Compensation for spill-in and spill-out partial volume effects in cardiac PET imaging

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Partial volume effects (PVEs) in PET imaging result in incorrect regional activity estimates due to both spill-out and spill-in from activity in neighboring regions. It is important to compensate for both effects to achieve accurate quantification. In this study, an image-based partial volume compensation (PVC) method was developed and validated for cardiac PET.

Methods and Results

The method uses volume-of-interest (VOI) maps segmented from contrast-enhanced CTA images to compensate for both spill-in and spill-out in each VOI. The PVC method was validated with simulation studies and also applied to images of dog cardiac perfusion PET data. The PV effects resulting from cardiac motion and myocardial uptake defects were investigated and the efficacy of the proposed PVC method in compensating for these effects was evaluated.

Results

Results indicate that the magnitude and the direction of PVEs in cardiac imaging change over time. This affects the accuracy of activity distributions estimates obtained during dynamic studies. The defect regions have different PVEs as compared to the normal myocardium. Cardiac motion contributes around 10% to the PVEs. PVC effectively removed both spill-in and spill-out in cardiac imaging.

Conclusions

PVC improved left ventricular wall uniformity and quantitative accuracy. The best strategy for PVC was to compensate for the PVEs in each cardiac phase independently and treat severe uptake defects as independent regions from the normal myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004;11:171-85.

    Article  PubMed  Google Scholar 

  2. Ficaro EP, Corbett JR. Advances in quantitative perfusion SPECT imaging. J Nucl Cardiol 2004;11:62-70.

    Article  PubMed  Google Scholar 

  3. Krivokapich J, Smith GT, Huang SC, Hoffman EJ, Ratib O, Phelps ME, et al. N-13 Ammonia myocardial imaging at rest and with exercise in normal volunteers—quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation. 1989;80:1328-37.

    Article  PubMed  CAS  Google Scholar 

  4. Travin MI, Bergmann SR. Assessment of myocardial viability. Semin Nucl Med 2005;35:2-16.

    Article  PubMed  Google Scholar 

  5. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood-flow with (H2O)-O-15 and dynamic positron-emission tomography—strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78:104-15.

    Article  PubMed  CAS  Google Scholar 

  6. Nakajima K, Taki J, Shuke N, Bunko H, Takata S, Hisada K. Myocardial perfusion imaging and dynamic analysis with Tc-99m tetrofosmin. J Nucl Med. 1993;34:1478-84.

    PubMed  CAS  Google Scholar 

  7. Tsui BMW, Segars WP, Lalush DS, Frey EC. Non-clinical factors affecting myocardial intensity uniformity in myocardial perfusion SPECT images. J Nucl Med 2000;41.

  8. Hove JD, Gambhir SS, Kofoed KF, Kelbaek H, Schelbert HR, Phelps ME. Dual spillover problem in the myocardial septum with nitrogen-13-ammonia flow quantitation. J Nucl Med. 1998;39:591-8.

    PubMed  CAS  Google Scholar 

  9. Hoffman JM, Coleman RE. Perfusion quantitation using positron emission tomography. Invest Radiol. 1992;27:S22-6.

    Article  PubMed  Google Scholar 

  10. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932-45.

    Article  PubMed  Google Scholar 

  11. Stamos JA, Rogers WL, Clinthone NH, Koral KF. Object-dependent performance comparison of two iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1998;35:611-4.

    Article  Google Scholar 

  12. Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969-76.

    Article  PubMed  Google Scholar 

  13. Boussion N, Hatt M, Lamare F, Bizais Y, Turzo A, Rest CCL, et al. A multiresolution image based approach for correction of partial volume effects in emission tomography. Phys Med Biol 2006;51:1857-76.

    Article  PubMed  CAS  Google Scholar 

  14. Feuardent J, Soret M, de Dreuille O, Buvat I. Partial volume effect (PVE) corrections for accurate estimate of tumor uptake in PET. J Nucl Med 2003;44.

  15. Meltzer CC, Zubieta JK, Links JM, Brakeman P, Stumpf MJ, Frost JJ. MRI-based correction for PET partial volume effects in the presence of heterogeneity in gray-matter radioactivity. J Nucl Med 1994;35.

  16. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, Mcveigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray-matter using positron emission tomography—MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571-83.

    Article  PubMed  CAS  Google Scholar 

  17. Rousset OG, Ma YL, Evans AC. Correction for partial volume effects in PET: Principle and validation. J Nucl Med. 1998;39:904-11.

    PubMed  CAS  Google Scholar 

  18. Baete K, Nuyts J, Van Laere K, Van Paesschen W, Ceyssens S, De Ceuninck L, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 2004;23:305-17.

    Article  PubMed  Google Scholar 

  19. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood-glow in human-subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14:639-52.

    Article  PubMed  CAS  Google Scholar 

  20. Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med. 1992;33:1243-50.

    PubMed  CAS  Google Scholar 

  21. Iida H, Law I, Pakkenberg B, Krarup-Hansen A, Eberl S, Holm S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. Journal of Cerebral Blood Flow and. Metabolism 2000;20:1237-51.

    CAS  Google Scholar 

  22. Iida H, Rhodes CG, Desilva R, Yamamoto Y, Araujo LI, Maseri A, et al. Myocardial tissue fraction—correction for partial volume effects and measure of tissue viability. J Nucl Med. 1991;32:2169-75.

    PubMed  CAS  Google Scholar 

  23. Law I, Iida H, Holm S, Nour S, Rostrup E, Svarer C, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab 2000;20:1252-63.

    Article  PubMed  CAS  Google Scholar 

  24. Nuyts J, Maes A, Vrolix M, Schiepers C, Schelbert H, Kuhle W, et al. Three-dimensional correction for spillover and recovery of myocardial PET images. J Nucl Med. 1996;37:767-74.

    PubMed  CAS  Google Scholar 

  25. Pretorius PH, King MA. Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging. Med Phys 2009;36:105-15.

    Article  PubMed  Google Scholar 

  26. Segars WP, Tsui BM, Lalush DS, Frey EC, King MA, Manocha D. Development and application of the new dynamic Nurbs-based Cardiac-Torso (NCAT) phantom. J Nucl Med 2001;42 (abstract).

  27. Ravert HT, Madar I, Dannals RF. Radiosynthesis of 3-[18F]-fluoropropyl and 4-[18F]-fluorobenzyl triarylphosphonium ions. J Label Compd Radiopharm 2004;47:469-76.

    Article  CAS  Google Scholar 

  28. Madar I, Ravert HT, Du Y, Hilton J, Volokh L, Dannals RF, et al. Characterization of uptake of the new PET imaging compound F-18-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 2006;47:1359-66.

    PubMed  CAS  Google Scholar 

  29. Madar I, Ravert H, DiPaula A, Du Y, Dannals F, Becker LC. Assessment of severity of coronary artery stenosis in a canine model using the new positron emission tomography agent 18F-fluorobenzyl triphenyl phosphonium: Comparison with 99mTc-tetrofosmin. J Nuc Med 2007;48:1021-30.

    Article  CAS  Google Scholar 

  30. Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pitterburgh Compound B amyloid imaging PET studies: A comparative analysis. J Nucl Med 2005;46:1959-72.

    PubMed  CAS  Google Scholar 

  31. Mourik JEM, Lubberink M, Schuitemaker A, Tolboom N, Berckel BN, Lammertsma AA, et al. Image-derived input functions for PET brain studies. Eur J Nucl Med Mol Imaging 2009;36:463-71.

    Article  PubMed  Google Scholar 

  32. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990;15:1031-42.

    Article  Google Scholar 

  33. Tsui BMW, Segars WP, Lalush DS. Effects of upward creep and respiratory motion in myocardial SPECT. IEEE Trans Nucl Sci 2000;47:1192-5.

    Article  Google Scholar 

  34. Le Meunier L, Maass-Moreno R, Carrasquillo JA, Dieckmann W, Bacharach SL. PET/CT imaging: Effect of respiratory motion on apparent of myocardial uptake. J Nucl Cardiol 2006;13:821-30.

    Article  PubMed  Google Scholar 

  35. Segars WP, Tsui BMW. Study of the efficacy of respiratory gating in myocardial SPECT using the new 4-D NCAT phantom. IEEE Trans Nucl Sci 2002;49:675-9.

    Article  Google Scholar 

  36. Du Y, Frey EC, Tsui BMW. Partial volume compensation with region of interest based iterative reconstruction. J Nucl Med 2004;45 (abstract).

  37. Austin RE Jr, Aldea GS, Coggins DL, Flynn AE, Hoffman JL. Profound spatial heterogeneity of coronary reserve: Discordance between patterns of resting and maximal myocardial blood flow. Circ Res. 1990;67:319-31.

    Article  PubMed  Google Scholar 

  38. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovascular Res 2001;50:151-61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the following grants: American Heart Association (AHA) Grant: 11SDG5290001. The content of this study is solely the responsibility of the authors and does not necessarily represent the official view of AHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Y., Madar, I., Stumpf, M.J. et al. Compensation for spill-in and spill-out partial volume effects in cardiac PET imaging. J. Nucl. Cardiol. 20, 84–98 (2013). https://doi.org/10.1007/s12350-012-9649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-012-9649-z

Keywords

Navigation