Skip to main content
Log in

The Centre and the Depth of the Centre for Continuous Maps on Dendrites with Finite Branch Points

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

An Erratum to this article was published on 24 July 2017

This article has been updated

Abstract

Let \(\mathbf{D}\) be a dendrite with finite branch points and \(f:\mathbf{D}\rightarrow \mathbf{D}\) be continuous. Denote by R(f) and \(\Omega (f)\) the set of recurrent points and the set of non-wandering points of f respectively. Let \(\Omega _0 (f)=\mathbf{D}\) and \(\Omega _n (f)=\Omega (f|_{\Omega _{n-1} (f)})\) for all \(n\in \mathbf{N}\). The minimal \(m\in \mathbf{N}\cup \{\infty \}\) such that \(\Omega _{m} (f)=\Omega _{m+1} (f)\) is called the depth of f. In this note, we show that \(\Omega _3(f)=\overline{R(f)}\) and the depth of f is at most 3. Furthermore, we show that there exist a dendrite \(\mathbf{D}\) with finite branch points and \(f\in C^0(\mathbf{D})\) such that \( \Omega _3(f)=\overline{R(f)}\ne \Omega _2(f)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 24 July 2017

    An erratum to this article has been published.

References

  1. Acosta, G., Eslami, P.: On open maps between dendrites. Hous. J. Math. 33, 753–770 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Baldwin, S.: Continuous itinerary functions and dendrite maps. Top. Appl. 154, 2889–2938 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balibrea, F., Hric, R., Snoha, L.: Minimal sets on graphs and dendrites. Int. J. Bifurc. Chaos 13, 1721–1725 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beardon, A.F.: Iteration of Rational Functions. Springer, New York (1991)

    Book  MATH  Google Scholar 

  5. Block, L., Coppel, W.: Dynamics in One Dimension. Springer, New York (1992)

    Book  MATH  Google Scholar 

  6. Coven, E.M., Hedlund, G.A.: \(\overline{P(f)} =\overline{R(f)}\) for maps of the interval. Proc. Am. Math. Soc. 79, 316–318 (1980)

    MATH  Google Scholar 

  7. Coven, E.M., Mulvey, I.: Transitivity and the centre for maps of the circle. Ergod. Theory Dyn. Syst. 6, 1–8 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kato, H.: A note on periodic points and recurrent points of maps of dendrites. Bull. Aust. Math. Soc. 51, 459–461 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mai, J., Shi, E.: \(\overline{R} =\overline{P}\) for maps of dendrites \(X\) with Card(End(\(X)) < c\). Int. J. Bifur. Chaos 19, 1391–1396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mai, J., Sun, T.: Non-wandering points and the depth for graph maps. Sci. China A: Math. 50, 1808–1814 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Nadler Jr, Sam, B.: Continuum Theory: An Introduction. Marcel Dekker, Inc, New York (1992)

  12. Neumann, D.A.: Central sequences in flows on 2-manifolds of finite genus. Proc. Am. Math. Soc. 61, 39–43 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peitgen, H.O., Richter, P.H.: The Beauty of Fractals. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  14. Sharkovskii, A. N.: Non-wandering points and the centre of a continuous mapping of the line into itself (Ukrainian). Dopovidi. Akad. Nauk. Ukraini. RSR, pp. 865–868(1964)

  15. Sun, T., He, Q., Su, D., Xi, H.: Dendrite maps whose every periodic point is a fixed point. Chaos Solit. Fract. 65, 62–64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, T., He, Q., Xi, H.: Intra-orbit separation of dense orbits of dendrite maps. Chaos Solit. Fract. 57, 89–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, T., Chen, Z., Liu, X., Xi, H.: Equicontinuity of dendrite maps. Chaos Solit. Fract. 69, 10–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xiong, J.: \(\Omega (f|_{\Omega (f)})=\overline{P(f)} \) for continuous interval self-maps. Kexue Tongbao 27, 513–514 (1982)

    Google Scholar 

  19. Ye, X.: The centre and the depth of centre of a tree map. Bull. Aust. Math. Soc. 48, 347–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ye, X.: Non-wandering points and the depth of a graph map. J. Aust. Math. Soc. 69A, 143–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taixiang Sun.

Additional information

This work was supported by NNSF of China (11261005, C11461003) and NSF of Guangxi (2014GXNSFBA118003).

An erratum to this article is available at https://doi.org/10.1007/s12346-017-0251-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Xi, H. The Centre and the Depth of the Centre for Continuous Maps on Dendrites with Finite Branch Points. Qual. Theory Dyn. Syst. 16, 697–702 (2017). https://doi.org/10.1007/s12346-016-0204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-016-0204-1

Keywords

Mathematics Subject Classification

Navigation