Skip to main content
Log in

Integrability and Linearizability of Three Dimensional Vector Fields

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the integrability and linearizability problem of three dimensional systems

$$\begin{aligned} \dot{x}&= x(1 +ax+by+cz),\\ \dot{y}&= -y+ dx^2 +exy + fxz+gyz+hy^2+kz^2,\\ \dot{z}&= z(1 + \ell x + my +pz). \end{aligned}$$

More precisely, we give a complete set of necessary conditions for integrability and linearizability and then prove their sufficiency using Darboux method and Darboux inverse Jacobi multiplier, power series argument and a solution of a Riccati equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz, W., Christopher, C.: Local integrability and linearizability of three dimensional Lotka–Volterra systems. Appl. Math. Comput. 219, 4067–4081 (2012)

    Article  MathSciNet  Google Scholar 

  2. Basov, V.V., Romanovski, V.G.: First integrals of a three-dimensional system in the case of one zero eigenvalue. J. Phys. A Math. Theor. 43, 1–8 (2010)

    Article  MathSciNet  Google Scholar 

  3. Berrone, L.R., Giacomini, H.: Inverse Jacobi multiplier. Rend. Circ. Mat. Palermo 2, 77–103 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bobienski, M., Żoła̧dek, H.: The three-dimensional generalized Lotka–Volterra systems. Ergod. Theory Dyn. Syst. 25, 759–791 (2005)

    Article  MATH  Google Scholar 

  5. Cairó, L., Llibre, J.: Darboux integrability for 3D Lotka–Volterra systems. J. Phys. A Math. Gen. 33, 2395–2406 (2000)

    Article  MATH  Google Scholar 

  6. Christodoulides, Y.T., Damianou, P.A.: Darboux polynomials for Lotka–Volterra systems in three dimensions. J. Nonlinear Math. Phys. 16, 339–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in \(\mathbb{C}^2\). J. Dyn. Control Syst. 9, 311–363 (2003)

    Article  MATH  Google Scholar 

  8. Fronville, A., Sadovski, A.P.: Solution of the \(1:-2\) resonant center problem in the quadratic case. Fundam. Math. 157, 191–207 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Goriely, A.: Integrability and non-integrability of dynamical systems. Advanced series in nonlinear dynamics. World Scientific, Singapore (2001)

    Google Scholar 

  10. Ilyashenko, Y., Yakovenko, S.: Lectures on analytic differential equations. American Mathematical Society, USA (2008)

    MATH  Google Scholar 

  11. Llibre, J.: Integrability of polynomial differential systems. Handbook of differential equations: ordinary differential equations, pp. 427–532. Elsevier, North-Holland (2004)

    Google Scholar 

  12. Llibre, J.: On the integrability of the differential systems in dimension two and of the plolynomial differential systems in arbitrary dimensions. J. Appl. Anal. Comput. 1, 33–52 (2011)

    MathSciNet  Google Scholar 

  13. Llibre, J., Rodríguez, G.: Invariant hyperplanes and Darboux integrability for d-dimensional polynomial differential systems. Bull. Sci. Math. 124, 599–619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Żoła̧dek, H.: The problem of center for resonant singular points of polynomial vector fields. J. Differ. Equ. 137, 94–118 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Colin Christopher for helpful discussions during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, W. Integrability and Linearizability of Three Dimensional Vector Fields. Qual. Theory Dyn. Syst. 13, 197–213 (2014). https://doi.org/10.1007/s12346-014-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-014-0113-0

Keywords

Mathematics Subject Classification

Navigation