Skip to main content
Log in

Genetik der atopischen Dermatitis

Genetics of atopic dermatitis

  • Atopische Dermatitis
  • Published:
hautnah Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Die atopische Dermatitis (AD) ist eine häufige multifaktorielle Hauterkrankung mit starkem genetischem Hintergrund. Störungen in der epidermalen Barriere nehmen pathophysiologisch eine zentrale Stellung ein und sind teils zurückzuführen auf Null-Mutationen im Filaggrin-kodierenden Gen (FLG), einem essenziellen Strukturprotein des Stratum corneum. Eine gestörte Barrierefunktion ist eng verknüpft mit chronischer Immunaktivierung in der Haut im Zuge einer systemischen allergischen Reaktion. Es bestehen aber auch Abnormalitäten in den Immunantworten selbst. So konnten in den letzten Jahren, vor allem mittels genomweiter Studien, multiple, mit AD assoziierte Gene identifiziert werden, die unter anderem an Aufbau und Funktion der Hautbarriere, an der epidermalen Proliferation sowie Differenzierung, am Lipidmetabolismus und an der Immunantwort beteiligt sind. In diesem Artikel diskutieren wir die rezenten Erkenntnisse aus dem Bereich der Genetik der atopischen Dermatitis, ihre pathophysiologischen Konsequenzen und mögliche therapeutische Anwendungen.

Abstract

Atopic dermatitis is a common multifactorial skin disease showing a strong genetic background. A widespread abnormality in cutaneous barrier function seems to be pivotal in the pathogenesis, mainly attributed to loss-of-function mutations in the gene encoding filaggrin (FLG) that plays a decisive role in the skin barrier formation. A defective permeability barrier is strongly linked to chronic immune activation in the skin during systemic allergic reactions. Additionally, there are also abnormalities in the immune response itself. In recent years genome-wide association studies have enabled the identification of multiple genes involved in the formation and function of the cutaneous barrier, epidermal proliferation and differentiation, cutaneous lipid metabolism and in the response of the immune system. In this article we discuss recent genetic findings, their pathophysiological consequences and potential therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kubo A, Nagao K, Amagai M (2012) Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest 122:440–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Maintz L, Novak N et al (2007) Getting more and more complex: the pathophysiology of atopic eczema. Eur J Dermatol 17:267–283

    CAS  PubMed  Google Scholar 

  3. McAleer MA, Irvine AD (2013) The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol 131:280–291

    Article  CAS  PubMed  Google Scholar 

  4. Elias PM, Schmuth M (2009) Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 9(5):437–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Larsen FS, Holm NV, Henningsen K et al (1986) Atopic dermatitis. A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 15:487–494

    Article  CAS  PubMed  Google Scholar 

  6. Strachan DP, Wong HJ, Spector TD (2001) Concordance and interrelationship of atopic diseases and markers of allergic sensitization among adult female twins. J Allergy Clin Immunol 108:901–907

    Article  CAS  PubMed  Google Scholar 

  7. van Beijsterveldt CE, Boomsma DI (2007) Genetics of parentally reported asthma, eczema and rhinitis in 5-yr-old twins. Eur Respir J 29:516–521

    Article  PubMed  Google Scholar 

  8. Haagerup A, Bjerke T, Schiotz PO, Dahl R, Binderup HG, Tan Q, Kruse TA (2004) Atopic dermatitis – a total genome-scan for susceptibility genes. Acta Derm Venereol 84:346–352

    Article  CAS  PubMed  Google Scholar 

  9. Bussmann C, Weidinger S, Novak N (2011) Genetischer Hintergrund der atopischen Dermatitis. JDDG 9:670–677

    PubMed  Google Scholar 

  10. Cole C, Kroboth K (2014) Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J Allergy Clin Immunol 134(1):82–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Weidinger S, Willis-Owen S, Kamatani Y (2013) A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum Mol Genet 22:4841–4856

  12. Sun LD, Xiao FL, Li Y et al (2011) Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat. Genet 43:690–694

    Article  CAS  PubMed  Google Scholar 

  13. Guttman-Yassky E, Suarez-Farinas M et al (2009) Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol 124:1235–1244.e58

    Article  CAS  PubMed  Google Scholar 

  14. Saaf AM, Tengvall-Linder M, Chang HY et al (2008) Global expression profiling in atopic eczema reveals reciprocal expression of inflammatory and lipid genes. PLoS One 3:e4017

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lee SH, Jeong SK, Ahn SK (2006) An update of the defensive barrier function of skin. Yonsei Med J 47:293–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hae-Jun L, Seung-Hun L et al (2014) Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. Allergy Asthma Immunol Res 6(4):276–287

    Article  Google Scholar 

  17. Elias PM, Hatano Y, Williams ML (2008) Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol 121:1337–1343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Palmer CN, Irvine AD et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446

    Article  CAS  PubMed  Google Scholar 

  19. Thyssen JP, Godoy-Gijon E, Elias PM (2013) Ichthyosis vulgaris: the filaggrin mutation disease. Br J Dermatol 168:1155–1166

    Article  CAS  PubMed  Google Scholar 

  20. Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365:1315–1327

    Article  CAS  PubMed  Google Scholar 

  21. Smith FJ, Irvine AD, Terron-Kwiatkowski A et al (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–342

    Article  CAS  PubMed  Google Scholar 

  22. Brown SJ, Kroboth K, Sandilands A et al (2012) Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Invest Dermatol 132:98–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Weidinger S, Rodriguez E, Stahl C et al (2007) Filaggrin mutations strongly predispose to early-onset and extrinsic atopic dermatitis. J Invest Dermatol 127:724–726

    Article  CAS  PubMed  Google Scholar 

  24. Rippke F, Schreiner V, Doering T, Maibach HI (2004) Stratum corneum pH in atopic dermatitis: impact on skin barrier function and colonization with Staphylococcus Aureus. Am J Clin Dermatol 5:217–223

    Article  PubMed  Google Scholar 

  25. Levin J, Friedlander SF, Del Rosso JQ (2013) Atopic dermatitis and the stratum corneum: part 1: the role of filaggrin in the stratum corneum barrier and atopic skin. J Clin Aesthet Dermatol 6:16–22

    PubMed Central  PubMed  Google Scholar 

  26. O’Regan GM, Irvine AD (2010) The role of filaggrin in the atopic diathesis. Clin Exp Allergy 40:965–972

    Article  PubMed  Google Scholar 

  27. Gao PS, Rafaels NM, H and T, Murray T et al (2009) Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol 124:507–513

    Article  CAS  PubMed  Google Scholar 

  28. Otsuka A, Doi H, Egawa G (2014) Possible new therapeutic strategy to regulate atopic dermatitis through upregulating flaggrin expression. J Allergy Clin Immunol 133(1):139–46.e1–10. doi:10.1016/j.jaci.2013.07.027. Epub 2013 Sep 20

    Article  CAS  PubMed  Google Scholar 

  29. Stout TE, McFarland T, Mitchell JC (2014) Recombinant filaggrin ist internalized and processed to correct filaggrin deficiency. J Invest Dermatol 134(2):423–429. doi:10.1038/jid.2013.284. Epub 2013 Jun 21

    Article  CAS  PubMed  Google Scholar 

  30. Thyssen JP, Kezic S (2014) Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol 134:792–799

    Article  CAS  PubMed  Google Scholar 

  31. Grether-Beck S, Felsner I, Brenden H et al (2012) Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol 132:1561–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hatano Y, Man MQ, Uchida Y et al (2009) Maintenance of an acidic stratum corneum prevents emergence of murine atopic dermatitis. J Invest Dermatol 129:1824–1835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Elias PM with the editorial assistance of Joan Wakefield (2014) Lipid abnormalities and lipid-based repair strategies in atopic dermatitis. Biochim Biophys Acta 1841:323–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Saunders SP, Goh CS, Brown SJ et al (2013) Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J Allergy Clin Immunol 132:1121–1129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sasaki T, Shiohama A, Kubo A et al (2013) A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol 132:1111–1120.e4

    Article  CAS  PubMed  Google Scholar 

  36. Kircik LH, Del Rosso JQ (2011) Nonsteroidal treatment of atopic dermatitis in pediatric patients with a ceramide-dominant topical emulsion formulated with an optimized ratio of physiological lipids. J Clin Aesthet Dermatol 4:25–31

    PubMed Central  PubMed  Google Scholar 

  37. De Benedetto A, Rafaels NM, McGirt LY et al (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127:773–786.e1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Baek JH, Lee SE, Choi KJ, Choi EH, Lee SH (2013) Acute modulations in stratum corneum permeability barrier function affect claudin expression and epidermal tight junction function via changes of epidermal calcium gradient. Yonsei Med J 54:523–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sugawara T, Iwamoto N, Akashi M et al (2013) Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J Dermatol Sci 70:12–18

    Article  CAS  PubMed  Google Scholar 

  40. Kuo IH, Carpenter-Mendini A, Yoshida T et al (2013) Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol 133:988–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Levin J, Friedlander SF, Del Rosso JQ (2013) Atopic dermatitis and the stratum corneum: part 3: the immune system in atopic dermatitis. J Clin Aesthet Dermatol 6(12):37–44

    PubMed Central  PubMed  Google Scholar 

  42. Hirasawa Y, Takai T, Nakamura T et al (2010) Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. J Invest Dermatol 130:614–617

    Article  CAS  PubMed  Google Scholar 

  43. Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T (2005) A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 124:198–203

    Article  CAS  PubMed  Google Scholar 

  44. Furio L, Hovnanian A (2014) Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biol Chem 395(9):945–958

    Article  CAS  PubMed  Google Scholar 

  45. Hachem JP, Houben E, Crumrine D et al (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126:2074–2086

    Article  CAS  PubMed  Google Scholar 

  46. Lee SE, Jeong SK, Lee SH (2010) Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med J 51:808–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhao LP, Di Z, Zhang L et al (2012) Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol 26:572–577

    Article  CAS  PubMed  Google Scholar 

  48. Lee HJ, Yoon NY (2014) Topical acidic cream prevents the development of atopic dermatitis – and asthma-lika lesions in murine model. Exp Dermatol 23:736–741

    Article  CAS  PubMed  Google Scholar 

  49. Hatano Y, Elias PM, Crumrine D et al (2011) Efficacy of combined peroxisome proliferator-activated receptor-alpha ligand and glucocorticoid therapy in a murine model of atopic dermatitis. J Invest Dermatol 131:1845–1852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kim B, Choi YE, Kim HS (2014) Eruca sativa and ist flavonoid components, quercetin and isorhamnetin, improve skin barrier funkction by activation of peroxisome proliferator-activated receptor (PPAR)-alpha and suppression of inflammatory cytokines. Phytother Res 28:1359–1366

    Article  CAS  PubMed  Google Scholar 

  51. van den Bogaard EH, Bergboer JG, Vonk-Bergers M et al (2013) Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J Clin Invest 123:917–927

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Park K, Lee S, Lee YM (2013) Sphingolipids and antimicrobial peptides: function and roles in atopic dermatitis. Biomol Ther (Seoul) 21(4):251–257

    Article  CAS  Google Scholar 

  53. Guttman-Yassky E, Nograles KE, Krueger JG (2011) Contrasting pathogenesis of atopic dermatitis and psoriasis–Part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol 127:1420–1432

    Article  CAS  PubMed  Google Scholar 

  54. Oh DY, Schumann RR, Hamann L, Neumann K, Worm M, Heine G (2009) Association of the toll-like receptor 2 A-16934T promoter polymorphism with severe atopic dermatitis. Allergy 64:1608–1615

    Article  CAS  PubMed  Google Scholar 

  55. Niebuhr M, Langnickel J, Sigel S, Werfel T (2010) Dysregulation of CD36 upon TLR-2 stimulation in monocytes from patients with atopic dermatitis and the TLR2 R753Q polymorphism. Exp Dermatol 19:e296–e298

    Article  PubMed  Google Scholar 

  56. Rothenbacher D, Weyermann M, Beermann C et al(2005) Breastfeeding, soluble CD 14 concentration in breast milk and risk of atopic dermatitis and asthma in early childhood: birth cohort study. Clin Exp Allergy 35(8):1014–1021

    Article  CAS  PubMed  Google Scholar 

  57. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kondo H, Ichikawa Y, Imokawa G (1998) Percutaneous sensitization with allergens through barrier-disrupted skin elicits a Th2-dominant cytokine response. Eur J Immunol 28(3):769–779

    Article  CAS  PubMed  Google Scholar 

  59. Kaminishi K (2002) Flow cytometric analysis of IL-4, IL-13 and IFN-γ expression in peripheral blood mononuclear cells and detection of circulating IL-13 in patients with atopic dermatitis provide evidence for the involvement of type 2 cytokines in the disease. J Dermatol Sci 29:19–25

    Article  CAS  PubMed  Google Scholar 

  60. Afshar M, Gallo RL (2013) Innate immune defense system of the skin. Vet Dermatol 24:32–38.e8–9

    Article  PubMed  Google Scholar 

  61. Yagi R, Nagai H, Iigo Y, Akimoto T, Arai T, Kubo M (2002) Development of atopic dermatitis-like skin lesions in STAT6-deficient NC/Nga mice. J Immunol 168:2020–2027

    Article  CAS  PubMed  Google Scholar 

  62. Nedoszytko B, Sokolowska-Wojdylo M (2014) Chemokines and cytokines network in the pathogenesis oft he inflammatory skin diseases: atopic dermatitis, psoriases and skin mastocytosis. Postepy Dermatol Alergol 31(2):84–91

    Article  PubMed Central  PubMed  Google Scholar 

  63. Sokołowska-Wojdyło M, Gleń J, Zabłotna M et al (2012) Association of distinct IL-31 polymorphisms with pruritus and severity of atopic dermatitis. J Eur Acad Dermatol Venereol 27:662-664

    Article  PubMed  Google Scholar 

  64. Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2(3):110

    Article  PubMed Central  PubMed  Google Scholar 

  65. He JQ, Chan-Yeung M, Becker AB, mich-Ward H, Ferguson AC, Manfreda J, Watson WT, Sandford AJ (2003) Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun 4:385–389

    Article  CAS  PubMed  Google Scholar 

  66. Weidinger S, Klopp N, Wagenpfeil S, Rummler L et al (2004) Association of a STAT 6 haplotype with elevated serum IgE levels in a population based cohort of white adults. J Med Genet 41:658–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ober C, Yao TC (2011) The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev 242(1):10–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Beck LA, Thaci D, Hamilton JD et al (2014) Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 371(2):130–139

    Article  PubMed  Google Scholar 

  69. Zhu Z, Oh MH, Yu J, Liu YJ, Zheng T (2011) The role of TSLP in IL-13-induced atopic march. Sci Rep 1:23

    Article  PubMed Central  PubMed  Google Scholar 

  70. Sano Y, Masuda K, Tamagawa-Mineoka R et al (2013) Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin Exp Immuno 171(3):330–337

    Article  CAS  Google Scholar 

  71. Kubo T, Kemkura R (2014) ΔNp63 controls a tlr3-mediated mechanism that abundantly provides thymic stromal lymphopoietin in atopic dermatitis. PLoS One 9(8):e105498

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Bauer.

Ethics declarations

Interessenkonflikt

C. Prodinger, J. Bauer und M. Laimer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prodinger, C., Bauer, J. & Laimer, M. Genetik der atopischen Dermatitis. hautnah 14, 40–46 (2015). https://doi.org/10.1007/s12326-014-0138-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12326-014-0138-9

Schlüsselwörter

Keywords

Navigation