Skip to main content
Log in

Oculomotor Impairments in Developmental Dyspraxia

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Children with developmental dyspraxia (DD) express impairments in the acquisition of various motor skills and in the development of their social cognition abilities. Although the neural bases of this condition are not fully understood, they are thought to involve frontal cortical areas, subcortical structures, and the cerebellum. Although cerebellar dysfunction is typically difficult to assess and quantify using traditional neurophysiological methods, oculomotor analysis may provide insight into specific cerebellar patterns. The aim of the present study was to investigate, in dyspraxic and typically developing subjects, various oculomotor saccade tasks specifically designed to reveal frontal and cerebellar dysfunction. In addition to evidence supporting prefrontal dysfunction, our results revealed increased variability of saccade accuracy consistent with cerebellar impairments. Furthermore, we found that dyspraxic patients showed decreased velocities of non-visually guided saccades. A closer analysis revealed significant differences in saccade velocity profiles with slightly decreased maximum saccade velocities but markedly prolonged deceleration phases. We show that this pattern was not related to a decreased state of alertness but was suggestive of cerebellar dysfunction. However, the clear predominance of this pattern in non-visually guided saccades warrants alternative hypotheses. In light of previous experimental and anatomical studies, we propose that this unusual pattern may be a consequence of impaired connections between frontal areas and cerebellar oculomotor structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vaivre-Douret L. Developmental coordination disorders: state of art. Neurophysiol Clin. 2014;44:13–23.

    Article  CAS  PubMed  Google Scholar 

  2. Vaivre-Drouet L, Lalanne C, Cabrol D, Ingster-Moati I, Falissard B, Golse B. Identification of diagnostic criteria of developmental coordination disorder (DCD) or developmental dyspraxia subtypes. Neurospychiatrie de l’Enfance et de l’Adolescence. 2011;59:443–53.

    Article  Google Scholar 

  3. Vaivre-Drouet L, Lalanne C, Ingster-Moati I, et al. Subtypes of developmental dyspraxia and developmental coordination disorder (DCD): research on their nature and etiology. Dev Neuropsychol. 2011;36:1–29.

    Article  Google Scholar 

  4. Xavier J, Tilmont E, Bonnot O. Children’s synchrony and rhythmicity in imitation of peers: toward a developmental model of empathy. J Physiol Paris. 2013;107:291–7.

    Article  PubMed  Google Scholar 

  5. Bo J, Lee CM. Motor skill learning in children with developmental coordination disorder. Res Dev Disabil. 2013;34:2047–55.

    Article  PubMed  Google Scholar 

  6. Kheradmand A, Zee DS. Cerebellum and ocular motor control. Front Neurol. 2011;2:1–15.

    Article  Google Scholar 

  7. Langaas T, Mon-Williams M, Wann JP, Pascal E, Thompson C. Eye movements, prematurity and developmental co-ordination disorder. Vision Res. 1998;38:1817–26.

    Article  CAS  PubMed  Google Scholar 

  8. Lahuis BE, Van Engeland H, Cahn W, et al. Smooth pursuit eye movement (SPEM) in patients with multiple complex developmental disorder (MCDD), a subtype of the pervasive developmental disorder. World J Biol Psychiatry. 2009;10:905–12.

    Article  PubMed  Google Scholar 

  9. Robert MP, Ingster-Moati I, Albuisson E, Cabrol D, Golse B, Vaivre-Douret L. Vertical and horizontal smooth pursuit eye movements in children with developmental coordination disorder. Dev Med Child Neurol. 2014;56:595–600.

    Article  PubMed  Google Scholar 

  10. Gaymard B. Cortical and sub-cortical control of saccades and clinical application. Rev Neurol (Paris). 2012;168:734–40.

    Article  CAS  Google Scholar 

  11. Quaia C, Lefèvre P, Optican LM. Model of the control of saccades by superior colliculus and cerebellum. J Neurophysiol. 1999;82:999–1018.

    CAS  PubMed  Google Scholar 

  12. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th edn. Arlington, VA: American Psychiatric Publishing, 2013.

  13. Henderson SE, Sugden DA. Movement assessment battery for children. London: Psychological Corporation; 1992.

    Google Scholar 

  14. Brannigan GG, Decker SL. The Bender-Gestalt II. Am J Orthopsychiatry. 2006;76:10–2.

    Article  PubMed  Google Scholar 

  15. Maslow P, Frostig M, Lefever DW, Whittlesey JR. The Marianne Frostig developmental test of visual perception, 1963 Standardization. Percept Mot Skills. 1964;19:463–99.

    Article  CAS  PubMed  Google Scholar 

  16. Blote AW, Hamstra-Bletz L. A longitudinal study on the structure of handwriting. Percept Motor Skills. 1991;72:983–94.

    Article  Google Scholar 

  17. Wechsler D. Wechsler intelligence scale for children—fourth edition (WISC-IV). San Antonio, TX: The Psychological Corporation; 2003.

    Google Scholar 

  18. Wechsler D. Wechsler adult intelligence scale—fourth edition (WAIS–IV). San Antonio, TX: NCS Pearson; 2008.

    Google Scholar 

  19. Smit AC, Van Gisbergen JA, Cools AR. A parametric analysis of human saccades in different experimental paradigms. Vision Res. 1987;27:1745–62.

    Article  CAS  PubMed  Google Scholar 

  20. Crawford JR, Garthwaite PH. Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia. 2002;40:1196–208.

    Article  CAS  PubMed  Google Scholar 

  21. Crawford JR, Howell DC. Comparing an individual’s test score against norms derived from small samples. Clin Neuropsychol. 1998;12:482–86.

    Article  Google Scholar 

  22. Leigh RJ, Kennard C. Using saccades as a research tool in the clinical neurosciences. Brain. 2004;127:460–77.

    Article  CAS  PubMed  Google Scholar 

  23. Gaymard B, Pierrot-Deseilligny C. Neurology of saccades and smooth pursuit. Curr Opin Neurol. 1999;12:13–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ploner CJ, Gaymard BM, Rivaud-Péchoux S, Pierrot-Deseilligny C. The prefrontal substrate of reflexive saccade inhibition in humans. Biol Psychiatry. 2005;57:1159–65.

    Article  PubMed  Google Scholar 

  25. Pierrot-Deseilligny C, Müri RM, Ploner CJ, Gaymard B, Demeret S, Rivaud-Pechoux S. Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain. 2003;126:1460–73.

    Article  CAS  PubMed  Google Scholar 

  26. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80:953–78.

    CAS  PubMed  Google Scholar 

  27. Munoz DP, Dorris MC, Paré M, Everling S. On your mark, get set: brainstem circuitry underlying saccadic initiation. Can J Physiol Pharmacol. 2000;78:934–44.

    Article  CAS  PubMed  Google Scholar 

  28. Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J Neurophysiol. 1999;81:2191–214.

    CAS  PubMed  Google Scholar 

  29. Sommer MA, Tehovnik EJ. Reversible inactivation of macaque dorsomedial frontal cortex: effects on saccades and fixations. Exp Brain Res. 1999;124:429–46.

    Article  CAS  PubMed  Google Scholar 

  30. Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y. Cortical control of reflexive visually-guided saccades. Brain. 1991;114:1473–85.

    Article  PubMed  Google Scholar 

  31. Condy C, Rivaud-Péchoux S, Ostendorf F, Ploner CJ, Gaymard B. Neural substrate of antisaccades: role of subcortical structures. Neurology. 2004;63:1571–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kojima Y, Soetedjo R, Fuchs AF. Behavior of the oculomotor vermis for five different types of saccade. J Neurophysiol. 2010;104:3667–76.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ohtsuka K, Noda H. Burst discharges of fastigial neurons in macaque monkeys are driven by vision- and memory-guided saccades but not by spontaneous saccades. Neurosci Res. 1992;15:224–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ron S, Robinson DA. Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol. 1973;36:1004–22.

    CAS  PubMed  Google Scholar 

  35. Ohki M, Kitazawa H, Hiramatsu T, et al. Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol. 2009;101:934–47.

    Article  PubMed  Google Scholar 

  36. Gaymard B, Ploner CJ, Rivaud-Péchoux S, Pierrot-Deseilligny C. The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Exp Brain Res. 1999;129:288–301.

    Article  CAS  PubMed  Google Scholar 

  37. Rivaud S, Müri RM, Gaymard B, Vermersch AI, Pierrot-Deseilligny C. Eye movement disorders after frontal eye field lesions in humans. Exp Brain Res. 1994;102:110–20.

    Article  CAS  PubMed  Google Scholar 

  38. Peel TR, Johnston K, Lomber SG, Corneil BD. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field. J Neurophysiol. 2014;111:415–33.

    Article  PubMed  Google Scholar 

  39. Thier P, Möck M. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. Prog Brain Res. 2006;151:293–320.

    Article  PubMed  Google Scholar 

  40. Kaneko CR, Fuchs AF. Effect of pharmacological inactivation of nucleus reticularis tegmenti pontis on saccadic eye movements in the monkey. J Neurophysiol. 2006;95:3698–711.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;1(113):1–34.

    Article  Google Scholar 

  42. Courchesne E, Mouton PR, Calhoun ME, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306:2001–10.

    Article  CAS  PubMed  Google Scholar 

  43. Bernard JA, Mittal VA, 160.10. Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: the importance of regional cerebellar analysis approaches. Front Psychiatry. 2014;5(160.10):3389.

    Google Scholar 

  44. Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Frontiers in public health. 2015;34. Doi:10.1016/B978-0-12-418700-9.000011-0

  45. Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Distributed Networks-New Outlooks on Cerebellar Function. 2015 3:89

  46. Hodge SM, Makris N, Kennedy DN, et al. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord. 2010;1(40):300–16.

    Article  Google Scholar 

  47. Manto MU, Jissendi P. Cerebellum: links between development, developmental disorders and motor learning. Frontiers in Neuroanatomy. 2012 6 1.10.3389/fnana.2012.0000

  48. Schmitt LM, Cook EH, Sweeney JA, Mosconi MW. Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in cerebellum and brainstem. Mol Autism. 2014;5:47.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cui H, Liu XH, Wang KY, Zhu CY, Wang C, Xie XH. Association of saccade duration and saccade acceleration/deceleration asymmetry during visually guided saccade in schizophrenia patients. PLoS One. 2014;9(5):e97308.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gurvich CT, Fitzgerald PB, Georgiou-Karistianis N, White OB. Saccadic impairment in schizophrenia with prominent negative symptoms. Neuroreport. 2008;19:1435–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gaymard.

Ethics declarations

Conflict of Interest

The authors disclose any financial or commercial conflict of interest with this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaymard, B., Giannitelli, M., Challes, G. et al. Oculomotor Impairments in Developmental Dyspraxia. Cerebellum 16, 411–420 (2017). https://doi.org/10.1007/s12311-016-0817-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0817-6

Keywords

Navigation