Skip to main content

Advertisement

Log in

Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome

  • Consensus Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is involved in sensorimotor operations, cognitive tasks and affective processes. Here, we revisit the concept of the cerebellar syndrome in the light of recent advances in our understanding of cerebellar operations. The key symptoms and signs of cerebellar dysfunction, often grouped under the generic term of ataxia, are discussed. Vertigo, dizziness, and imbalance are associated with lesions of the vestibulo-cerebellar, vestibulo-spinal, or cerebellar ocular motor systems. The cerebellum plays a major role in the online to long-term control of eye movements (control of calibration, reduction of eye instability, maintenance of ocular alignment). Ocular instability, nystagmus, saccadic intrusions, impaired smooth pursuit, impaired vestibulo-ocular reflex (VOR), and ocular misalignment are at the core of oculomotor cerebellar deficits. As a motor speech disorder, ataxic dysarthria is highly suggestive of cerebellar pathology. Regarding motor control of limbs, hypotonia, a- or dysdiadochokinesia, dysmetria, grasping deficits and various tremor phenomenologies are observed in cerebellar disorders to varying degrees. There is clear evidence that the cerebellum participates in force perception and proprioceptive sense during active movements. Gait is staggering with a wide base, and tandem gait is very often impaired in cerebellar disorders. In terms of cognitive and affective operations, impairments are found in executive functions, visual-spatial processing, linguistic function, and affective regulation (Schmahmann’s syndrome). Nonmotor linguistic deficits including disruption of articulatory and graphomotor planning, language dynamics, verbal fluency, phonological, and semantic word retrieval, expressive and receptive syntax, and various aspects of reading and writing may be impaired after cerebellar damage. The cerebellum is organized into (a) a primary sensorimotor region in the anterior lobe and adjacent part of lobule VI, (b) a second sensorimotor region in lobule VIII, and (c) cognitive and limbic regions located in the posterior lobe (lobule VI, lobule VIIA which includes crus I and crus II, and lobule VIIB). The limbic cerebellum is mainly represented in the posterior vermis. The cortico-ponto-cerebellar and cerebello-thalamo-cortical loops establish close functional connections between the cerebellum and the supratentorial motor, paralimbic and association cortices, and cerebellar symptoms are associated with a disruption of these loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.

    PubMed  PubMed Central  Google Scholar 

  3. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.

    Article  PubMed  Google Scholar 

  4. Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.

    Article  Google Scholar 

  5. Babinski J. Sur le role du cervelet dans les actes volitionnels nécessitant une succession rapide de mouvements (1) (diadococinésie). Rev Neurol. 1902;10:1013–5.

    Google Scholar 

  6. Holmes G. The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lecture III. Lancet. 1922;200:59–65.

    Article  Google Scholar 

  7. Haines DE, Manto MU. Clinical symptoms of cerebellar disease and their interpretation. Cerebellum. 2007;6(4):360–74.

    Article  PubMed  Google Scholar 

  8. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    Article  CAS  PubMed  Google Scholar 

  9. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  10. Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.

    Article  PubMed  Google Scholar 

  11. Mariën P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.

    PubMed  PubMed Central  Google Scholar 

  12. Lewis RF, Zee DS. Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol (Paris). 1993;149(11):665–77.

    CAS  Google Scholar 

  13. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145:205–11.

    Article  CAS  PubMed  Google Scholar 

  14. Wartenberg R. Cerebellar signs. J Am Med Assoc. 1954;156(2):102–5.

    Article  CAS  PubMed  Google Scholar 

  15. Haerer AF. DeJong’s the neurological examination. 5th ed. Lippincott: Raven; 1992.

    Google Scholar 

  16. Kheradmand A, Zee DS. Cerebellum and ocular motor control. Front Neurol. 2011;2:53.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  Google Scholar 

  18. Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord. 2009;24(12):1820–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bürk K. Clinical scales of cerebellar ataxias. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1785–1798.

  20. Jacobi H, Rakowicz M, Rola R, Fancellu R, Mariotti C, Charles P, et al. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. Cerebellum. 2013;12(3):418–28.

    Article  CAS  PubMed  Google Scholar 

  21. Brandt T, Dieterich M, Strupp M. Vertigo and dizziness—common complaints. 2nd ed. London: Springer; 2013.

    Book  Google Scholar 

  22. Choi KD, Lee H, Kim JS. Vertigo in brainstem and cerebellar strokes. Curr Opin Neurol. 2013;26:90–5.

    Article  PubMed  Google Scholar 

  23. Kim JS, Lee H. Vertigo due to posterior circulation stroke. Semin Neurol. 2013;33(3):179–84.

    Article  PubMed  Google Scholar 

  24. Lee H, Sohn SI, Cho YW, Lee SR, Ahn BH, Park BR, et al. Cerebellar infarction presenting isolated vertigo: frequency and vascular topographical patterns. Neurology. 2006;67(7):1178–83.

    Article  CAS  PubMed  Google Scholar 

  25. Lee H, Kim HA. Nystagmus in SCA territory infarction: pattern and a possible mechanism. J Neurol Neurosurg Psychiatry. 2013;84:446–51.

    Article  PubMed  Google Scholar 

  26. Park HK, Kim JS, Strupp M, Zee DS. Isolated floccular infarction: impaired vestibular responses to horizontal head impulse. J Neurol. 2013;260:1576–82.

    Article  PubMed  Google Scholar 

  27. Kim HJ, Lee SH, Park JH, Choi JY, Kim JS. Isolated vestibular nuclear infarction: report of two cases and review of the literature. J Neurol. 2014;261(1):121–9.

    Article  PubMed  Google Scholar 

  28. Lee SH, Park SH, Kim JS, Kim HJ, Yunusov F, Zee DS. Isolated unilateral infarction of the cerebellar tonsil: ocular motor findings. Ann Neurol. 2014;75:429–34.

    Article  PubMed  Google Scholar 

  29. Baier B, Dieterich M. Ocular tilt reaction: a clinical sign of cerebellar infarctions? Neurology. 2009;72(6):572–3.

    Article  PubMed  Google Scholar 

  30. Kim HA, Yi HA, Lee H. Apogeotropic central positional nystagmus as a sole sign of nodular infarction. Neurol Sci. 2012;33(5):1189–91.

    Article  PubMed  Google Scholar 

  31. Kremmyda O, Zwergal A, La FC, Brandt T, Jahn K, Strupp M. 4-Aminopyridine suppresses positional nystagmus caused by cerebellar vermis lesion. J Neurol. 2013;260(1):321–3.

    Article  CAS  PubMed  Google Scholar 

  32. Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurotherapeutics. 2007;4:267–73.

    Article  CAS  PubMed  Google Scholar 

  33. Jen JC. Hereditary episodic ataxias. Ann N Y Acad Sci. 2008;1142:250–3.

    Article  CAS  PubMed  Google Scholar 

  34. Yu-Wai-Man P, Gorman G, Bateman DE, Leigh RJ, Chinnery PF. Vertigo and vestibular abnormalities in spinocerebellar ataxia type 6. J Neurol. 2009;256(1):78–82.

    Article  PubMed  Google Scholar 

  35. Krafczyk S, Tietze S, Swoboda W, Valkovic P, Brandt T. Artificial neural network: a new diagnostic posturographic tool for disorders of stance. Clin Neurophysiol. 2006;117(8):1692–8.

    Article  PubMed  Google Scholar 

  36. Szmulewicz DJ, Waterston JA, Halmagyi GM, Mossman S, Chancellor AM, Mclean CA, et al. Sensory neuropathy as part of the cerebellar ataxia neuropathy vestibular areflexia syndrome. Neurology. 2011;76(22):1903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirchner H, Kremmyda O, Hufner K, Stephan T, Zingler V, Brandt T, et al. Clinical, electrophysiological, and MRI findings in patients with cerebellar ataxia and a bilaterally pathological head-impulse test. Ann N Y Acad Sci. 2011;1233(1):127–38.

    Article  PubMed  Google Scholar 

  38. Szmulewicz DJ, Mclean CA, Rodriguez ML, Chancellor AM, Mossman S, Lamont D, et al. Dorsal root ganglionopathy is responsible for the sensory impairment in CANVAS. Neurology. 2014;82:1410–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leigh RJ, Zee DS. The neurology of eye movements. 5th ed. Oxford: University Press; 2015.

    Google Scholar 

  41. Wagner JN, Glaser M, Brandt T, Strupp M. Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry. 2008;79:672–7.

    Article  CAS  PubMed  Google Scholar 

  42. Zee DS. Mechanisms of nystagmus. Am J Otol. 1985;Suppl:30–4.

  43. Walker MF, Zee DS. The effect of hyperventilation on downbeat nystagmus in cerebellar disorders. Neurology. 1999;53(7):1576–9.

    Article  CAS  PubMed  Google Scholar 

  44. Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.

    Article  CAS  PubMed  Google Scholar 

  45. Brandt T. Positional and positioning vertigo and nystagmus. J Neurol Sci. 1990;95:3–28.

    Article  CAS  PubMed  Google Scholar 

  46. Huh YE, Kim JS. Patterns of spontaneous and head-shaking nystagmus in cerebellar infarction: imaging correlations. Brain. 2011;134:3662–71.

    Article  PubMed  Google Scholar 

  47. Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain. 2007;130:10–35.

    Article  PubMed  Google Scholar 

  48. Sharpe JA. Neurophysiology and neuroanatomy of smooth pursuit: lesion studies. Brain Cogn. 2008;68:241–54.

    Article  PubMed  Google Scholar 

  49. Kremmyda O, Kirchner H, Glasauer S, Brandt T, Jahn K, Strupp M. False-positive head-impulse test in cerebellar ataxia. Front Neurol. 2012;3:162.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thurston SE, Leigh RJ, Abel LA, Dell’Osso LF. Hyperactive vestibulo-ocular reflex in cerebellar degeneration: pathogenesis and treatment. Neurology. 1987;37:53–7.

    Article  CAS  PubMed  Google Scholar 

  51. Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria. An oculographic, control system and clinico-anatomical analysis. Brain. 1976;99:497–508.

    Article  CAS  PubMed  Google Scholar 

  52. Helmchen C, Straube A, Buttner U. Saccadic lateropulsion in Wallenberg’s syndrome may be caused by a functional lesion of the fastigial nucleus. J Neurol. 1994;241:421–6.

    Article  CAS  PubMed  Google Scholar 

  53. Versino M, Hurko O, Zee DS. Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain. 1996;119(Pt 6):1933–50.

    Article  PubMed  Google Scholar 

  54. Hüfner K, Frenzel C, Kremmyda O, Adrion C, Bardins S, Glasauer S, et al. Esophoria or esotropia in adulthood: a sign of cerebellar dysfunction? J Neurol. 2015;262(3):585–92.

    Article  PubMed  Google Scholar 

  55. Brandt T, Dieterich M. Skew deviation with ocular torsion: a vestibular brainstem sign of topographic diagnostic value. Ann Neurol. 1993;33:528–34.

    Article  CAS  PubMed  Google Scholar 

  56. Hallett M. Electrophysiological evaluation of movement disorders. In: Aminoff MJ, editor. Aminoff’s electrodiagnosis in clinical neurology. 6th ed. Amsterdam: Elsevier; 2012. p. 437–53.

    Chapter  Google Scholar 

  57. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  58. Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum. Philadelphia: Davis; 1981.

    Google Scholar 

  59. Samii A, Wassermann EM, Hallett M. Decreased postexercise facilitation of motor evoked potentials in patients with cerebellar degeneration. Neurology. 1997;49(2):538–42.

    Article  CAS  PubMed  Google Scholar 

  60. Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  61. Stewart TG, Holmes G. Symptomatology of cerebellar tumors: a study of forty cases. Brain. 1904;27:522–91.

    Article  Google Scholar 

  62. Manto M. Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  63. Goldstein K, Reichmann F. Beiträge zur Kasuistik und Symptomatologie der Kleinhirnerkrankungen (im besonderen zu den Störungen der Bewegungen, der Gewichts-, Raum- und Zeiteinschätzung). Arch Psychiat Nervenkr. 1916;56:466–521.

    Article  Google Scholar 

  64. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press; 1958.

    Google Scholar 

  65. Campbell WW. DeJong’s the neurologic examination. 6th ed. Philadelphia: Lippencott Williams & Wilkens; 2005.

    Google Scholar 

  66. Ziegler W, Wessel K. Speech timing in ataxic disorders: sentence production and rapid repetitive articulation. Neurology. 1996;47:208–14.

    Article  CAS  PubMed  Google Scholar 

  67. Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord. 1992;7:95–109.

    Article  CAS  PubMed  Google Scholar 

  68. Hallett M, Bhagwan T, Shahani BT, Young RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38:1163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Conrad B, Brooks VB. Effects on dentate cooling on rapid alternating arm movements. J Neurophysiol. 1973;37:792–804.

    Google Scholar 

  70. Spidalieri G, Busby L, Lamarre Y. Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time. J Neurophysiol. 1983;50:1359–79.

    CAS  PubMed  Google Scholar 

  71. Thach WT, Perry JG, Kane SA, Goodkin HP. Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy. Rev Neurol (Paris). 1993;149:607–28.

    CAS  Google Scholar 

  72. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.

    CAS  PubMed  Google Scholar 

  73. Deuschl G, Raethjen J, Lindemann M, Krack P. The pathophysiology of tremor. Muscle Nerve. 2001;24:716–35.

    Article  CAS  PubMed  Google Scholar 

  74. Flament D, Hore J. Comparison of cerebellar intention tremor under isotonic and isometric conditions. Brain Res. 1988;439:179–86.

    Article  CAS  PubMed  Google Scholar 

  75. Louis ED, Frucht SJ, Rios E. Intention tremor in essential tremor: prevalence and association with disease duration. Mov Disord. 2009;24(4):626–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Louis ED. The primary type of tremor in essential tremor is kinetic rather than postural: cross-sectional observation of tremor phenomenology in 369 cases. Eur J Neurol. 2013;20(4):725–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Louis ED. From neurons to neuron neighborhoods: the rewiring of the cerebellar cortex in essential tremor. Cerebellum. 2014;13(4):501–12.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Grimaldi G, Manto M. Is essential tremor a Purkinjopathy? The role of the cerebellar cortex in its pathogenesis. Mov Disord. 2013;28(13):1759–61.

    Article  PubMed  Google Scholar 

  79. Louis ED, Faust PL, Vonsattel JP, Honig LS, Rajput A, Rajput A, et al. Torpedoes in Parkinson’s disease, Alzheimer’s disease, essential tremor, and control brains. Mov Disord. 2009;24(11):1600–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Leegwater-Kim J, Louis ED, Pullman SL, Floyd AG, Borden S, Moskowitz CB, et al. Intention tremor of the head in patients with essential tremor. Mov Disord. 2006;21(11):2001–5.

    Article  PubMed  Google Scholar 

  81. Paris-Robidas S, Brochu E, Sintes M, Emond V, Bousquet M, Vandal M, et al. Defective dentate nucleus GABA receptors in essential tremor. Brain. 2012;135(Pt 1):105–16.

    Article  PubMed  Google Scholar 

  82. Prudente CN, Pardo CA, Xiao J, Hanfelt J, Hess EJ, Ledoux MS, et al. Neuropathology of cervical dystonia. Exp Neurol. 2013;241:95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fukutani Y, Cairns NJ, Rossor MN, Lantos PL. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett. 1996;214(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  84. Castiello U. The neuroscience of grasping. Nat Rev Neurosci. 2005;6:726–36.

    Article  CAS  PubMed  Google Scholar 

  85. Flanagan JR, Johansson RS. Hand movements. In: Ramashandran VS, editor. Encyclopedia of the human brain. USA: Elsevier Science; 2002. p. 399–414.

    Chapter  Google Scholar 

  86. Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, et al. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119:2528–37.

    Article  CAS  PubMed  Google Scholar 

  87. Nowak DA, Timmann D, Hermsdörfer J. Dexterity in cerebellar agenesis. Neuropsychologia. 2007;45:696–703.

    Article  PubMed  Google Scholar 

  88. Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res. 2002;145:28–39.

    Article  PubMed  Google Scholar 

  89. Rost K, Nowak DA, Timmann D, Hermsdörfer J. Preserved and impaired aspects of predictive grip force control in cerebellar subjects. Clin Neurophysiol. 2005;54:23–7.

    Google Scholar 

  90. Wolpert DM, Flanagan JR. Motor prediction. Curr Biol. 2001;11:R729–32.

    Article  CAS  PubMed  Google Scholar 

  91. Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.

    Article  PubMed  Google Scholar 

  92. Nowak DA, Timmann D, Hermsdörfer J. Deficits of grasping in cerebellar disorders. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1657–1667.

  93. Marek M, Paus S, Allert N, Mädler B, Klockgether T, Urbach H, et al. Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol. 2015;262(1):54–8.

    Article  CAS  PubMed  Google Scholar 

  94. Fisher CM, Cole M. Homolateral ataxia and crural paresis: a vascular syndrome. J Neurol Neurosurg Psychiatry. 1965;28:48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hiraga A. Ataxic hemiparesis. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Doordrecht: Springer; 2013. p. 1669–86.

    Chapter  Google Scholar 

  96. Schmahmann JD, Ko R, MacMore J. The human basis pontis: motor syndromes and topographic organization. Brain. 2004;127(Pt 6):1269–91.

    Article  PubMed  Google Scholar 

  97. Grimaldi G. Cerebellar motor disorders. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013.

    Google Scholar 

  98. Manto M, Godaux E, Jacquy J. Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 1994;35(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  99. Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist and fingers. J Neurophysiol. 1991;65:563–71.

    CAS  PubMed  Google Scholar 

  100. Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.

    CAS  PubMed  Google Scholar 

  101. Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.

    CAS  PubMed  Google Scholar 

  102. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.

    Article  PubMed  Google Scholar 

  103. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.

    Article  CAS  PubMed  Google Scholar 

  104. Brunamonti E, Chiricozzi FR, Clausi S, Olivito G, Giusti MA, Molinari M, et al. Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One. 2014;9(1):e85997. doi:10.1371/journal.pone.0085997.

  105. Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137(Pt 7):1931–44.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Brown SH, Kessler KR, Hefter H, Cooke JD, Freund HJ. Role of the cerebellum in visuomotor coordination. I. Delayed eye and arm initiation in patients with mild cerebellar ataxia. Exp Brain Res. 1993;94(3):478–88.

    Article  CAS  PubMed  Google Scholar 

  107. Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10:3180–94.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res. 1998;119(4):493–503.

    Article  CAS  PubMed  Google Scholar 

  109. Molinari M, Leggio M. Cerebellar sequencing for cognitive processing. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Doordrecht: Springer; 2013. p. 1701–15.

    Chapter  Google Scholar 

  110. Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.

    Article  CAS  PubMed  Google Scholar 

  111. Maschke M, Gomez CM, Tuite PJ, Konczak J. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain. 2003;126:2312–22.

    Article  PubMed  Google Scholar 

  112. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. 1996;26;272(5261):545–7.

    Article  Google Scholar 

  113. Hartmann MJ, Bower JM. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci. 2001;21(10):3549–63.

    CAS  PubMed  Google Scholar 

  114. Angel RW. Barognosis in a patient with hemiataxia. Ann Neurol. 1980;7:73–7.

    Article  CAS  PubMed  Google Scholar 

  115. Bhanpuri NH, Okamura AM, Bastian AJ. Active force perception depends on cerebellar function. J Neurophysiol. 2012;107:1612–20.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves proprioception. J Neurosci. 2013;33(36):14301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Grill SE, Hallett M, Marcus C, McShane L. Disturbances of kinaesthesia in patients with cerebellar disorders. Brain. 1994;117(Pt 6):1433–47.

    Article  PubMed  Google Scholar 

  118. Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998;13:958–64.

    Article  CAS  PubMed  Google Scholar 

  119. Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci. 2000;174:22–39.

    Article  CAS  PubMed  Google Scholar 

  120. Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, et al. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry. 2002;73:310–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89:1844–56.

    Article  PubMed  Google Scholar 

  122. Earhart GM, Bastian AJ. Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol. 2001;85:759–69.

    CAS  PubMed  Google Scholar 

  123. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. Cerebellum. 2012;11:194–211.

    Article  PubMed  Google Scholar 

  124. Timmann D, Horak FB. Perturbed step initiation in cerebellar subjects. 1. Modifications of postural responses. Exp Brain Res. 1998;119:73–84.

    Article  CAS  PubMed  Google Scholar 

  125. Serrao M, Conte C, Casali C, Ranavolo A, Mari S, Di Fabio R, et al. Reply to comment “Why do patients with cerebellar ataxia not use environmental cues for reducing unpredictability of sudden gait stopping?” on “Sudden stopping in patients with cerebellar ataxia”. Cerebellum. 2013;12:958–9.

    Article  PubMed  Google Scholar 

  126. Serrao M, Conte C, Casali C, Ranavolo A, Mari S, Di Fabio R, et al. Sudden stopping in patients with cerebellar ataxia. Cerebellum. 2013;12:607–16.

    Article  PubMed  Google Scholar 

  127. Serrao M, Mari S, Conte C, Ranavolo A, Casali C, Draicchio F, et al. Strategies adopted by cerebellar ataxia patients to perform U-turns. Cerebellum. 2013;12:460–8.

    Article  CAS  PubMed  Google Scholar 

  128. Conte C, Serrao M, Casali C, Ranavolo A, Mari S, Draicchio F, et al. Planned gait termination in cerebellar ataxias. Cerebellum. 2012;11:896–904.

    Article  PubMed  Google Scholar 

  129. Mari S, Serrao M, Casali C, Conte C, Ranavolo A, Padua L, et al. Turning strategies in patients with cerebellar ataxia. Exp Brain Res. 2012;222:65–75.

    Article  PubMed  Google Scholar 

  130. van de Warrenburg BP, Steijns JA, Munneke M, Kremer BP, Bloem BR. Falls in degenerative cerebellar ataxias. Mov Disord. 2005;20:497–500.

    Article  PubMed  Google Scholar 

  131. Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83:3019–30.

    CAS  PubMed  Google Scholar 

  132. Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130:786–8.

    Article  PubMed  Google Scholar 

  133. Martino G, Ivanenko YP, Serrao M, Ranavolo A, d’Avella A, Draicchio F, et al. Locomotor patterns in cerebellar ataxia. J Neurophysiol. 2014;112:2810–21.

    Article  CAS  PubMed  Google Scholar 

  134. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  CAS  PubMed  Google Scholar 

  135. Morton SM, Bastian AJ. Mechanisms of cerebellar gait ataxia. Cerebellum. 2007;6:79–86.

    Article  PubMed  Google Scholar 

  136. Hausdorff JM. Stride variability: beyond length and frequency. Gait Posture. 2004;20:304.

    Article  CAS  PubMed  Google Scholar 

  137. Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014;261:213–23.

    Article  PubMed  Google Scholar 

  138. Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, et al. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum. 2014;13:226–36.

    Article  CAS  PubMed  Google Scholar 

  139. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10:247–59.

    Article  PubMed  Google Scholar 

  140. Van de Warrenburg BP, Bakker M, Kremer BP, Bloem BR, Allum JH. Trunk sway in patients with spinocerebellar ataxia. Mov Disord. 2005;20:1006–13.

    Article  PubMed  Google Scholar 

  141. Conte C, Pierelli F, Casali C, Ranavolo A, Draicchio F, Martino G, et al. Upper body kinematics in patients with cerebellar ataxia. Cerebellum. 2014;13(6):689–97.

    Article  PubMed  Google Scholar 

  142. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.

    Article  CAS  PubMed  Google Scholar 

  143. Schmahmann JD and Pandya DN. The cerebrocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol 1997; 41:31–60.

  144. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59(2):1560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Moulton EA, Elman I, Pendse G, Schmahmann JD, Becerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci. 2011;31(10):3795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  147. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  148. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a pediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  149. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.

    Article  PubMed  Google Scholar 

  150. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  151. Brossard-Racine M, du Plessis AJ, Limperopoulos C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum. 2015;14(2):151–64.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;74:1524–31.

    Article  Google Scholar 

  153. Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex. 2010;46:869–79.

    Article  PubMed  Google Scholar 

  154. Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ. Associative learning. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 151–89.

    Google Scholar 

  155. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69(1):102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.

    Article  PubMed  Google Scholar 

  157. Guëll X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–8.

    Article  PubMed  Google Scholar 

  158. Pollack IF, Polinko P, Albright AL, Towbin R, Fitz C. Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery. 1995;37:885–93.

    Article  CAS  PubMed  Google Scholar 

  159. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Parvizi J, Joseph J, Press DZ, Schmahmann JD. Pathological laughter and crying in patients with multiple system atrophycerebellar type. Mov Disord. 2007;22:798–803.

    Article  PubMed  Google Scholar 

  161. Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23(1-2):17–29.

    Article  CAS  PubMed  Google Scholar 

  162. Hoche F, Harding JA, Vangel M, Schmahmann JD. The cerebellar contribution to social cognition. Soc Neurosci. Abstracts, 2014;114.

  163. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.

    Article  PubMed  Google Scholar 

  164. Darley FL, Aronson AE, Brown JR. Motor speech disorders. Philadelphia: Saunders; 1975.

    Google Scholar 

  165. Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.

    Article  CAS  PubMed  Google Scholar 

  166. Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.

    Article  PubMed  Google Scholar 

  167. Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239:223–7.

    Article  CAS  PubMed  Google Scholar 

  168. Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, et al. Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol. 2003;60:965–72.

    Article  PubMed  Google Scholar 

  169. Urban PP. Speech motor deficits in cerebellar infarctions. Brain Lang. 2013;127:323–6.

    Article  CAS  PubMed  Google Scholar 

  170. Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.

    Article  CAS  PubMed  Google Scholar 

  171. De Smet HJ, Baillieux H, Catsman-Berrevoets C, De Deyn PP, Mariën P, Paquier PF. Postoperative motor speech production in children with the syndrome of ‘cerebellar’ mutism and subsequent dysarthria: a critical review of the literature. Eur J Paediatr Neurol. 2007;11:193–207.

    Article  PubMed  Google Scholar 

  172. Mariën P, Verhoeven J, Engelborghs S, Rooker S, Pickut BA, De Deyn PP. A role for the cerebellum in motor speech planning: evidence from foreign accent syndrome. Clin Neurol Neurosurg. 2006;108:518–22.

    Article  PubMed  Google Scholar 

  173. Mariën P, Saerens J, Nanhoe R, Moens E, Nagels G, Pickut B, et al. Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J Neurol Sci. 1996;144:34–43.

    Article  PubMed  Google Scholar 

  174. Adamaszek M, Strecker K, Kessler C. Impact of cerebellar lesion on syntactic processing evidenced by event-related potentials. Neurosci Lett. 2012;12(2):78–82.

    Article  CAS  Google Scholar 

  175. Mariën P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79:580–600.

    Article  PubMed  Google Scholar 

  176. Moretti R, Bava A, Torre P, Antonello RM, Cazzato G. Reading errors in patients with cerebellar vermis lesions. J Neurol. 2002;249:461–8.

    Article  PubMed  Google Scholar 

  177. Moretti R, Torre P, Antonello RM, Carraro N, Zambito-Marsala S, Ukmar MJ, et al. Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Percept Mot Skills. 2002;94:677–94.

    Article  PubMed  Google Scholar 

  178. Mariën P, Baillieux H, De Smet HJ, Engelborghs S, Wilssens I, Paquier P, et al. Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study. Cortex. 2009;45:527–36.

    Article  PubMed  Google Scholar 

  179. De Smet HJ, Engelborghs S, Paquier PF, De Deyn PP, Mariën P. Cerebellar-induced apraxic agraphia: a review and three new cases. Brain Cogn. 2011;76(3):424–34.

    Article  PubMed  Google Scholar 

  180. Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2015;2:2.

  181. Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162:836–51.

    Article  CAS  PubMed  Google Scholar 

  182. Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, et al. Lesion-symptom mapping of the human cerebellum. Cerebellum. 2008;7:602–6.

    Article  CAS  PubMed  Google Scholar 

  183. Timmann D, Küper M, Gizewski ER, Schoch B, Donchin O. Lesion-symptom mapping of the human cerebellum. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1627–1656.

  184. Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A. MRI Atlas of the human cerebellum. San Diego: Academic; 2000.

    Google Scholar 

  185. Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts Of Interest

The authors declare no relevant conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodranghien, F., Bastian, A., Casali, C. et al. Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome. Cerebellum 15, 369–391 (2016). https://doi.org/10.1007/s12311-015-0687-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0687-3

Keywords

Navigation