Skip to main content

Advertisement

Log in

Maternal Immune Activation Produces Cerebellar Hyperplasia and Alterations in Motor and Social Behaviors in Male and Female Mice

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

There have been suggestions that maternal immune activation is associated with alterations in motor behavior in offspring. To explore this further, we treated pregnant mice with polyinosinic:polycytidylic acid (poly(I:C)), a viral mimetic that activates the innate immune system, or saline on embryonic days 13–15. At postnatal day (P) 18, offspring cerebella were collected from perfused brains and immunostained as whole-mounts for zebrin II. Measurements of zebrin II+/− stripes in both sexes indicated that prenatal poly(I:C)-exposed offspring had significantly wider stripes; this difference was also seen in similarly treated offspring in adulthood (~P120). When sagittal sections of the cerebellum were immunostained for calbindin and Purkinje cell numbers were counted, we observed greater numbers of Purkinje cells in poly(I:C) offspring at both P18 and ~ P120. In adolescence (~P40), both male and female prenatal poly(I:C)-exposed offspring exhibited poorer performance on the rotarod and ladder rung tests; deficits in performance on the latter test persisted into adulthood. Offspring of both sexes from poly(I:C) dams also exhibited impaired social interaction in adolescence, but this difference was no longer apparent in adulthood. Our results suggest that maternal immune exposure at a critical time of cerebellum development can enhance neuronal survival or impair normal programmed cell death of Purkinje cells, with lasting consequences on cerebellar morphology and a variety of motor and non-motor behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61:774–80. doi:10.1001/archpsyc.61.8.774.

    Article  PubMed  Google Scholar 

  2. Mednick SA, Machon RA, Huttunen MO, Bonett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 1988;45:189–92.

    Article  CAS  PubMed  Google Scholar 

  3. Susser ES, Schaefer CA, Brown AS, Begg MD, Wyatt RJ. The design of the prenatal determinants of schizophrenia study. Schizophr Bull. 2000;26:257–73.

    Article  CAS  PubMed  Google Scholar 

  4. Miller MT, Stromland K, Ventura L, Johansson M, Bandim JM, Gillberg C. Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int J Dev Neurosci. 2005;23:201–19. doi:10.1016/j.ijdevneu.2004.06.007.

    Article  PubMed  Google Scholar 

  5. Rodier PM, Hyman SL. Early environmental factors in autism. Ment Retard Dev Disabil Res Rev. 1998;4:121–8.

    Article  Google Scholar 

  6. Meyer U, Feldon J, Dammann O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res. 2011;69:26R–33. doi:10.1203/PDR.0b013e318212c196.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ellis S, Mouihate A, Pittman QJ. Early life immune challenge alters innate immune responses to lipopolysaccharide: implications for host defense as adults. FASEB J. 2005;19:1519–21. doi:10.1096/fj.04-3569fje.

    CAS  PubMed  Google Scholar 

  8. Spencer SJ, Martin S, Mouihate A, Pittman QJ. Early-life immune challenge: defining a critical window for effects on adult responses to immune challenge. Neuropsychopharmacology. 2006;31:1910–8. doi:10.1038/sj.npp.1301004.

    Article  CAS  PubMed  Google Scholar 

  9. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD. Differential activation of astrocytes by innate and adaptive immune stimuli. Glia. 2005;49:360–74. doi:10.1002/glia.20117.

    Article  PubMed  Google Scholar 

  10. Gilmore JH, Jarskog LF, Vadlamudi S. Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol. 2005;159:106–12. doi:10.1016/j.jneuroim.2004.10.008.

    Article  CAS  PubMed  Google Scholar 

  11. Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 2011;25:604–15. doi:10.1016/j.bbi.2010.12.017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res. 2000;47:64–72.

    Article  CAS  PubMed  Google Scholar 

  13. Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, et al. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol. 1997;177:797–802.

    Article  CAS  PubMed  Google Scholar 

  14. Arrode-Bruses G, Bruses JL. Maternal immune activation by poly I:C induces expression of cytokines IL-1beta and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J Neuroinflammation. 2012;9:83. doi:10.1186/1742-2094-9-83.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer U, Feldon J, Schedlowski M, Yee BK. Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun. 2006;20:378–88. doi:10.1016/j.bbi.2005.11.003.

    Article  CAS  PubMed  Google Scholar 

  16. Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun. 2008;22:469–86. doi:10.1016/j.bbi.2007.09.012.

    Article  CAS  PubMed  Google Scholar 

  17. Fatemi SH, Earle J, Kanodia R, Kist D, Emamian ES, Patterson PH, et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol. 2002;22:25–33.

    Article  PubMed  Google Scholar 

  18. Meyer U, Nyffeler M, Schwendener S, Knuesel I, Yee BK, Feldon J. Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology. 2008;33:441–56. doi:10.1038/sj.npp.1301413.

    Article  PubMed  Google Scholar 

  19. Sharma A, Valadi N, Miller AH, Pearce BD. Neonatal viral infection decreases neuronal progenitors and impairs adult neurogenesis in the hippocampus. Neurobiol Dis. 2002;11:246–56.

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, Cheung C, Wei R, Hui ES, Feldon J, Meyer U, et al. Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One. 2009;4, e6354. doi:10.1371/journal.pone.0006354.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Smith SE, Elliott RM, Anderson MP. Maternal immune activation increases neonatal mouse cortex thickness and cell density. J Neuroimmune Pharm. 2012;7:529–32. doi:10.1007/s11481-012-9372-1.

    Article  Google Scholar 

  22. Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology. 2010;35:2462–78. doi:10.1038/npp.2010.129.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wang H, Meng XH, Ning H, Zhao XF, Wang Q, Liu P, et al. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy. Toxicol Lett. 2010;192:245–51. doi:10.1016/j.toxlet.2009.10.030.

    Article  CAS  PubMed  Google Scholar 

  24. Dobbing J. The later growth of the brain and its vulnerability. Pediatrics. 1974;53:2–6.

    CAS  PubMed  Google Scholar 

  25. Limperopoulos C, du Plessis AJ. Disorders of cerebellar growth and development. Curr Opin Pediatr. 2006;18:621–7. doi:10.1097/MOP.0b013e32801080e8.

    Article  PubMed  Google Scholar 

  26. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24:1085–104. doi:10.1177/0883073809338067.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52. doi:10.1002/cne.902910405.

    Article  CAS  PubMed  Google Scholar 

  28. Marzban H, Hawkes R. On the architecture of the posterior zone of the cerebellum. Cerebellum. 2011;10:422–34. doi:10.1007/s12311-010-0208-3.

    Article  PubMed  Google Scholar 

  29. Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res. 2005;148:283–97. doi:10.1016/S0079-6123(04)48022-4.

    Article  PubMed  Google Scholar 

  30. Armstrong C, Hawkes R. Pattern formation in the cerebellum. Morgan & Claypool Life Sciences; 2013.

  31. Armstrong CL, Hawkes R. Pattern formation in the cerebellar cortex. Biochem Cell Biol. 2000;78:551–62.

    Article  CAS  PubMed  Google Scholar 

  32. Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, et al. A key role for the HLH transcription factor EBF2COE2, O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development. 2006;133:2719–29. doi:10.1242/dev.02437.

    Article  CAS  PubMed  Google Scholar 

  33. Leclerc N, Gravel C, Hawkes R. Development of parasagittal zonation in the rat cerebellar cortex: MabQ113 antigenic bands are created postnatally by the suppression of antigen expression in a subset of Purkinje cells. J Comp Neurol. 1988;273:399–420. doi:10.1002/cne.902730310.

    Article  CAS  PubMed  Google Scholar 

  34. Hawkes R, Mascher C. The development of molecular compartmentation in the cerebellar cortex. Acta Anat (Basel). 1994;151:139–49.

    Article  CAS  Google Scholar 

  35. Seil FJ, Johnson ML, Hawkes R. Molecular compartmentation expressed in cerebellar cultures in the absence of neuronal activity and neuron-glia interactions. J Comp Neurol. 1995;356:398–407. doi:10.1002/cne.903560307.

    Article  CAS  PubMed  Google Scholar 

  36. Wassef M, Sotelo C, Thomasset M, Granholm AC, Leclerc N, Rafrafi J, et al. Expression of compartmentation antigen zebrin I in cerebellar transplants. J Comp Neurol. 1990;294:223–34. doi:10.1002/cne.902940207.

    Article  CAS  PubMed  Google Scholar 

  37. Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977;278:377–409.

    Article  CAS  PubMed  Google Scholar 

  38. Woolsey TA, Van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 1970;17:205–42.

    Article  CAS  PubMed  Google Scholar 

  39. Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23:11342–51.

    CAS  PubMed  Google Scholar 

  40. Miale IL, Sidman RL. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol. 1961;4:277–96.

    Article  CAS  PubMed  Google Scholar 

  41. Namba K, Sugihara I, Hashimoto M. Close correlation between the birth date of Purkinje cells and the longitudinal compartmentalization of the mouse adult cerebellum. J Comp Neurol. 2011;519:2594–614. doi:10.1002/cne.22640.

    Article  PubMed  Google Scholar 

  42. Herrup K, Kuemerle B. The compartmentalization of the cerebellum. Annu Rev Neurosci. 1997;20:61–90. doi:10.1146/annurev.neuro.20.1.61.

    Article  CAS  PubMed  Google Scholar 

  43. Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol. 2006;494:215–27. doi:10.1002/cne.20791.

    Article  CAS  PubMed  Google Scholar 

  44. Oberdick J, Baader SL, Schilling K. From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci. 1998;21:383–90.

    Article  CAS  PubMed  Google Scholar 

  45. Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77. doi:10.1146/annurev.cellbio.23.090506.123237.

    Article  CAS  PubMed  Google Scholar 

  46. Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev Neurobiol. 2012;72:1335–48. doi:10.1002/dneu.22043.

    Article  CAS  PubMed  Google Scholar 

  47. Shi L, Smith SE, Malkova N, Tse D, Su Y, Patterson PH. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun. 2009;23:116–23. doi:10.1016/j.bbi.2008.07.012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Dahlgren J, Nilsson C, Jennische E, Ho HP, Eriksson E, Niklasson A, et al. Prenatal cytokine exposure results in obesity and gender-specific programming. Am J Physiol Endocrinol Metab. 2001;281:E326–34.

    CAS  PubMed  Google Scholar 

  49. Jonasson Z. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav Rev. 2005;28:811–25. doi:10.1016/j.neubiorev.2004.10.006.

    Article  PubMed  Google Scholar 

  50. Nguon K, Ladd B, Baxter MG, Sajdel-Sulkowska EM. Sexual dimorphism in cerebellar structure, function, and response to environmental perturbations. Prog Brain Res. 2005;148:341–51. doi:10.1016/S0079-6123(04)48027-3.

    Article  CAS  PubMed  Google Scholar 

  51. Sillitoe RV, Hawkes R. Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem. 2002;50:235–44.

    Article  CAS  PubMed  Google Scholar 

  52. White JJ, Reeber SL, Hawkes R and Sillitoe RV. Wholemount immunohistochemistry for revealing complex brain topography. J Vis Exp. 2012;62:e4042. doi 10.3791/4042

  53. Celio MR. Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience. 1990;35:375–475.

    Article  CAS  PubMed  Google Scholar 

  54. Tano D, Napieralski JA, Eisenman LM, Messer A, Plummer J, Hawkes R. Novel developmental boundary in the cerebellum revealed by zebrin expression in the lurcher (Lc/+) mutant mouse. J Comp Neurol. 1992;323:128–36. doi:10.1002/cne.903230111.

    Article  CAS  PubMed  Google Scholar 

  55. Marzban H, Zahedi S, Sanchez M, Hawkes R. Antigenic compartmentation of the cerebellar cortex in the syrian hamster Mesocricetus auratus. Brain Res. 2003;974:176–83.

    Article  CAS  PubMed  Google Scholar 

  56. Caston J, Jones N, Stelz T. Role of preoperative and postoperative sensorimotor training on restoration of the equilibrium behavior in adult mice following cerebellectomy. Neurobiol Learn Mem. 1995;64:195–202. doi:10.1006/nlme.1995.0002.

    Article  CAS  PubMed  Google Scholar 

  57. Lalonde R, Bensoula AN, Filali M. Rotorod sensorimotor learning in cerebellar mutant mice. Neurosci Res. 1995;22:423–6.

    Article  CAS  PubMed  Google Scholar 

  58. Stroobants S, Gantois I, Pooters T, D’Hooge R. Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behav Brain Res. 2013;241:32–7. doi:10.1016/j.bbr.2012.11.034.

    Article  PubMed  Google Scholar 

  59. Hunsaker MR, von Leden RE, Ta BT, Goodrich-Hunsaker NJ, Arque G, Kim K, et al. Motor deficits on a ladder rung task in male and female adolescent and adult CGG knock-in mice. Behav Brain Res. 2011;222:117–21. doi:10.1016/j.bbr.2011.03.039.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Metz GA, Whishaw IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods. 2002;115:169–79.

    Article  PubMed  Google Scholar 

  61. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun. 2012;26:607–16. doi:10.1016/j.bbi.2012.01.011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Xuan IC, Hampson DR. Gender-dependent effects of maternal immune activation on the behavior of mouse offspring. PLoS One. 2014;9, e104433. doi:10.1371/journal.pone.0104433.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Wallace K, Veerisetty S, Paul I, May W, Miguel-Hidalgo JJ, Bennett W. Prenatal infection decreases calbindin, decreases Purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats. Dev Neurosci. 2010;32:302–12. doi:10.1159/000319506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Goffinet AM. The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol (Berl). 1983;168:73–86.

    Article  CAS  Google Scholar 

  65. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell. 1999;97:689–701.

    Article  CAS  PubMed  Google Scholar 

  66. Gallagher E, Howell BW, Soriano P, Cooper JA, Hawkes R. Cerebellar abnormalities in the disabled (mdab1-1) mouse. J Comp Neurol. 1998;402:238–51.

    Article  CAS  PubMed  Google Scholar 

  67. Goldowitz D, Cushing RC, Laywell E, D’Arcangelo G, Sheldon M, Sweet HO, et al. Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J Neurosci. 1997;17:8767–77.

    CAS  PubMed  Google Scholar 

  68. Howell BW, Hawkes R, Soriano P, Cooper JA. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature. 1997;389:733–7. doi:10.1038/39607.

    Article  CAS  PubMed  Google Scholar 

  69. Chung SH, Marzban H, Croci L, Consalez GG, Hawkes R. Purkinje cell subtype specification in the cerebellar cortex: early B-cell factor 2 acts to repress the zebrin II-positive Purkinje cell phenotype. Neuroscience. 2008;153:721–32. doi:10.1016/j.neuroscience.2008.01.090.

    Article  CAS  PubMed  Google Scholar 

  70. Croci C, Fasano S, Superchi D, Perani L, Martellosio A, Brambilla R, et al. Cerebellar neurons and glial cells are transducible by lentiviral vectors without decrease of cerebellar functions. Dev Neurosci. 2006;28:216–21. doi:10.1159/000091919.

    Article  CAS  PubMed  Google Scholar 

  71. Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Expression of heat-shock protein Hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J Comp Neurol. 2001;429:7–21.

    Article  CAS  PubMed  Google Scholar 

  72. Khan D, Fernando P, Cicvaric A, Berger A, Pollak A, Monje FJ, et al. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry. 2014;4, e363. doi:10.1038/tp.2013.132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Liu YH, Lai WS, Tsay HJ, Wang TW, Yu JY. Effects of maternal immune activation on adult neurogenesis in the subventricular zone-olfactory bulb pathway and olfactory discrimination. Schizophr Res. 2013;151:1–11. doi:10.1016/j.schres.2013.09.007.

    Article  PubMed  Google Scholar 

  74. De Miranda J, Yaddanapudi K, Hornig M, Villar G, Serge R and Lipkin WI. Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. MBio 2010;1:200176–10 doi: 10.1128/mBio.00176-10.

  75. Dusart I, Flamant F. Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neuroanat. 2012;6:11. doi:10.3389/fnana.2012.00011.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. J Comp Neurol. 1996;374:332–41. doi:10.1002/(SICI)1096-9861(19961021)374:3<332::AID-CNE2>3.0.CO;2-2.

    Article  CAS  PubMed  Google Scholar 

  77. Vogel MW. Cell death, Bcl-2, Bax, and the cerebellum. Cerebellum. 2002;1:277–87. doi:10.1080/147342202320883588.

    Article  CAS  PubMed  Google Scholar 

  78. Fan H, Favero M, Vogel MW. Elimination of Bax expression in mice increases cerebellar purkinje cell numbers but not the number of granule cells. J Comp Neurol. 2001;436:82–91.

    Article  CAS  PubMed  Google Scholar 

  79. Goswami J, Martin LA, Goldowitz D, Beitz AJ, Feddersen RM. Enhanced Purkinje cell survival but compromised cerebellar function in targeted anti-apoptotic protein transgenic mice. Mol Cell Neurosci. 2005;29:202–21. doi:10.1016/j.mcn.2005.02.010.

    Article  CAS  PubMed  Google Scholar 

  80. Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14:1262–76.

    Article  CAS  PubMed  Google Scholar 

  81. Ashwell K. Microglia and cell death in the developing mouse cerebellum. Brain Res Dev Brain Res. 1990;55:219–30.

    Article  CAS  PubMed  Google Scholar 

  82. Cacci E, Ajmone-Cat MA, Anelli T, Biagioni S, Minghetti L. In vitro neuronal and glial differentiation from embryonic or adult neural precursor cells are differently affected by chronic or acute activation of microglia. Glia. 2008;56:412–25. doi:10.1002/glia.20616.

    Article  PubMed  Google Scholar 

  83. Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, et al. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia. 2009;57:835–49. doi:10.1002/glia.20810.

    Article  PubMed  Google Scholar 

  84. Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain Behav Immun. 2013;27:22–32. doi:10.1016/j.bbi.2012.09.003.

    Article  CAS  PubMed  Google Scholar 

  85. Torres-Aleman I, Pons S, Santos-Benito FF. Survival of Purkinje cells in cerebellar cultures is increased by insulin-like growth factor I. Eur J Neurosci. 1992;4:864–9.

    Article  PubMed  Google Scholar 

  86. Cohen-Cory S, Dreyfus CF, Black IB. NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J Neurosci. 1991;11:462–71.

    CAS  PubMed  Google Scholar 

  87. Mount HT, Elkabes S, Dreyfus CF, Black IB. Differential involvement of metabotropic and p75 neurotrophin receptors in effects of nerve growth factor and neurotrophin-3 on cultured Purkinje cell survival. J Neurochem. 1998;70:1045–53.

    Article  CAS  PubMed  Google Scholar 

  88. Baker NL, Carlo Russo V, Bernard O, D’Ercole AJ, Werther GA. Interactions between bcl-2 and the IGF system control apoptosis in the developing mouse brain. Brain Res Dev Brain Res. 1999;118:109–18.

    Article  CAS  PubMed  Google Scholar 

  89. Croci L, Barili V, Chia D, Massimino L, van Vugt R, Masserdotti G, et al. Local insulin-like growth factor I expression is essential for Purkinje neuron survival at birth. Cell Death Differ. 2011;18:48–59. doi:10.1038/cdd.2010.78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Tolbert DL, Clark BR. GDNF and IGF-I trophic factors delay hereditary Purkinje cell degeneration and the progression of gait ataxia. Exp Neurol. 2003;183:205–19.

    Article  CAS  PubMed  Google Scholar 

  91. Heaton MB, Mitchell JJ, Paiva M. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum. J Neurobiol. 2000;45:95–104.

    Article  CAS  PubMed  Google Scholar 

  92. Neveu I, Arenas E. Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J Cell Biol. 1996;133:631–46.

    Article  CAS  PubMed  Google Scholar 

  93. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry. 2006;11:47–55. doi:10.1038/sj.mp.4001748.

    Article  CAS  PubMed  Google Scholar 

  94. Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res. 2001;47:27–36.

    Article  CAS  PubMed  Google Scholar 

  95. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702. doi:10.1523/JNEUROSCI. 2178-07.2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Girard S, Tremblay L, Lepage M, Sebire G. IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J Immunol. 2010;184:3997–4005. doi:10.4049/jimmunol.0903349.

    Article  CAS  PubMed  Google Scholar 

  97. Ellis S, Mouihate A, Pittman QJ. Neonatal programming of the rat neuroimmune response: stimulus specific changes elicited by bacterial and viral mimetics. J Physiol. 2006;571:695–701. doi:10.1113/jphysiol.2005.102939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Kirsten TB, Lippi LL, Bevilacqua E, Bernardi MM. LPS exposure increases maternal corticosterone levels, causes placental injury and increases IL-1Beta levels in adult rat offspring: relevance to autism. PLoS One. 2013;8:e82244. doi:10.1371/journal.pone.0082244.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Huang CC, Shih MC, Hsu NC, Chien Y, Chung BC. Fetal glucocorticoid synthesis is required for development of fetal adrenal medulla and hypothalamus feedback suppression. Endocrinology. 2012;153:4749–56. doi:10.1210/en.2012-1258.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Koga K, Cardenas I, Aldo P, Abrahams VM, Peng B, Fill S, et al. Activation of TLR3 in the trophoblast is associated with preterm delivery. Am J Reprod Immunol. 2009;61:196–212. doi:10.1111/j.1600-0897.2008.00682.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Howland JG, Cazakoff BN, Zhang Y. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience. 2012;201:184–98. doi:10.1016/j.neuroscience.2011.11.011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Lante F, Meunier J, Guiramand J, Maurice T, Cavalier M, de Jesus Ferreira MC, et al. Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic Biol Med. 2007;42:1231–45. doi:10.1016/j.freeradbiomed.2007.01.027.

    Article  CAS  PubMed  Google Scholar 

  103. Romero E, Guaza C, Castellano B, Borrell J. Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry. 2010;15:372–83. doi:10.1038/mp.2008.44.

    Article  CAS  PubMed  Google Scholar 

  104. Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry. 2013;3:e240. doi:10.1038/tp.2013.16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23:297–302.

    PubMed  Google Scholar 

  106. Airey DC, Lu L, Williams RW. Genetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture. J Neurosci. 2001;21:5099–109.

    CAS  PubMed  Google Scholar 

  107. Herrup K. Cell lineage relationships in the development of the mammalian CNS: role of cell lineage in control of cerebellar Purkinje cell number. Dev Biol. 1986;115:148–54.

    Article  CAS  PubMed  Google Scholar 

  108. Wahlsten D, Andison M. Patterns of cerebellar foliation in recombinant inbred mice. Brain Res. 1991;557:184–9.

    Article  CAS  PubMed  Google Scholar 

  109. Vogel MW, Sunter K, Herrup K. Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death. J Neurosci. 1989;9:3454–62.

    CAS  PubMed  Google Scholar 

  110. Watanabe M, Kano M. Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci. 2011;34:1697–710. doi:10.1111/j.1460-9568.2011.07894.x.

    Article  PubMed  Google Scholar 

  111. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34. doi:10.1146/annurev.neuro.31.060407.125606.

    Article  CAS  PubMed  Google Scholar 

  112. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, et al. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry. 1999;4:145–54.

    Article  CAS  PubMed  Google Scholar 

  113. Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20:214–28. doi:10.1093/cercor/bhp091.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum. 2012;11:392–410. doi:10.1007/s12311-010-0204-7.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32. doi:10.1016/j.neuron.2014.07.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Patterson PH. Modeling autistic features in animals. Pediatr Res. 2011;69:34R–40. doi:10.1203/PDR.0b013e318212b80f.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28:931–7. doi:10.1016/j.neuro.2007.01.014.

    Article  PubMed  Google Scholar 

  118. Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S, Abdallah M, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40:1423–30. doi:10.1007/s10803-010-1006-y.

    Article  PubMed  Google Scholar 

  119. Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord. 2010;40:1227–40. doi:10.1007/s10803-010-0981-3.

    Article  PubMed  Google Scholar 

  120. Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, et al. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51:311–6. doi:10.1111/j.1469-8749.2008.03242.x.

    Article  PubMed  Google Scholar 

  121. Hilton CL, Zhang Y, Whilte MR, Klohr CL, Constantino J. Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders. Autism. 2012;16:430–41. doi:10.1177/1362361311423018.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34. doi:10.1016/B978-0-12-418700-9.00001-0.

    Article  CAS  PubMed  Google Scholar 

  123. Sacrey LA, Germani T, Bryson SE, Zwaigenbaum L. Reaching and grasping in autism spectrum disorder: a review of recent literature. Front Neurol. 2014;5:6. doi:10.3389/fneur.2014.00006.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45. doi:10.1016/j.tins.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  125. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23:183–7. doi:10.1016/j.ijdevneu.2004.09.006.

    Article  PubMed  Google Scholar 

  126. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, et al. Timing of prenatal stressors and autism. J Autism Dev Disord. 2005;35:471–8. doi:10.1007/s10803-005-5037-8.

    Article  CAS  PubMed  Google Scholar 

  127. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57:245–54.

    Article  CAS  PubMed  Google Scholar 

  128. Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M, et al. Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord. 1995;25:1–18.

    Article  CAS  PubMed  Google Scholar 

  129. Limperopoulos C, Bassan H, Gauvreau K, Robertson RLJ, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120:584–93.

    Article  PubMed  Google Scholar 

  130. Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, et al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport. 1999;10:1647–51.

    Article  CAS  PubMed  Google Scholar 

  131. Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010;119:755–70. doi:10.1007/s00401-010-0655-4.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67. doi:10.1080/14734220701490995.

    Article  PubMed  Google Scholar 

  133. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51. doi:10.1038/nature11310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Wells EM, Walsh KS, Khademian ZP, Keating RF, Packer RJ. The cerebellar mutism syndrome and its relation to cerebellar cognitive function and the cerebellar cognitive affective disorder. Dev Disabil Res Rev. 2008;14:221–8. doi:10.1002/ddrr.25.

    Article  PubMed  Google Scholar 

  135. Koekkoek SK, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJ, Maex R, et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron. 2005;47:339–52. doi:10.1016/j.neuron.2005.07.005.

    Article  CAS  PubMed  Google Scholar 

  136. Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, Punnakkal P, et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science. 2012;338:128–32. doi:10.1126/science.1224159.

    Article  CAS  PubMed  Google Scholar 

  137. Piochon C, Kloth AD, Grasselli G, Titley HK, Nakayama H, Hashimoto K, et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun. 2014;5:5586. doi:10.1038/ncomms6586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Craig MC, Zaman SH, Daly EM, Cutter WJ, Robertson DM, Hallahan B, et al. Women with autistic-spectrum disorder: magnetic resonance imaging study of brain anatomy. Br J Psychiatry. 2007;191:224–8. doi:10.1192/bjp.bp.106.034603.

    Article  PubMed  Google Scholar 

  139. Noriuchi M, Kikuchi Y, Yoshiura T, Kira R, Shigeto H, Hara T, et al. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res. 2010;1362:141–9. doi:10.1016/j.brainres.2010.09.051.

    Article  CAS  PubMed  Google Scholar 

  140. Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ. Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum. 2008;7:406–16. doi:10.1007/s12311-008-0043-y.

    Article  CAS  PubMed  Google Scholar 

  141. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807. doi:10.1007/s12311-012-0355-9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Canadian Institutes of Health Research grants to RH and QJP. SAR and QJP were supported by personnel awards from Alberta Innovates - Health Solutions. We thank Dr. Mio Tsutsui for valuable technical support and the RUN facility of the Hotchkiss Brain Institute for access to behavioral facilities.

Disclosure of Potential Conflicts of Interest

The authors declare no conflicts of interest either directly or indirectly related to this research. This research was funded by the Canadian Institutes of Health Research (MOP 191318).

Research Involving Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Calgary where the research was performed and were approved by the University of Calgary Animal Care Committee in accordance with guidelines from the Canadian Council on Animal Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin J. Pittman.

Additional information

Tooka Aavani and Shadna A. Rana are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Table 1

(DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aavani, T., Rana, S.A., Hawkes, R. et al. Maternal Immune Activation Produces Cerebellar Hyperplasia and Alterations in Motor and Social Behaviors in Male and Female Mice. Cerebellum 14, 491–505 (2015). https://doi.org/10.1007/s12311-015-0669-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0669-5

Keywords

Navigation