Skip to main content
Log in

Bergmann Glia are Patterned into Topographic Molecular Zones in the Developing and Adult Mouse Cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar circuits are patterned into an array of topographic parasagittal domains called zones. Zones are best revealed by gene expression, circuit anatomy, and cellular degeneration patterns. Thus far, the study of zones has been focused heavily on how neurons are organized. Because of this, detailed neuronal patterning maps have been established for Purkinje cells, granule cells, Golgi cells, unipolar brush cells, and also for the terminal field organization of climbing fiber and mossy fiber afferents. In comparison, however, it remains poorly understood if glial cells are also organized into zones. We have identified an Npy-Gfp BAC transgenic mouse line (Tau-Sapphire Green fluorescent protein (Gfp) is under the control of the neuropeptide Y (Npy) gene regulatory elements) that can be used to label Bergmann glial cells with Golgi-like resolution. In these adult transgenic mice, we found that Npy-Gfp expression was localized to Bergmann glia mainly in lobules VI/VII and IX/X. Using double immunofluorescence, we show that in these lobules, Npy-Gfp expression in the Bergmann glia overlaps with the pattern of the small heat shock protein HSP25, a Purkinje cell marker for zones located in lobules VI/VII and IX/X. Developmental analysis starting from the day of birth showed that HSP25 and Npy-Gfp expression follow a similar program of spatial and temporal patterning. However, loss of Npy signaling did not alter the patterning of Purkinje cell zones. We conclude that Bergmann glial cells are zonally organized and their patterns are restricted by boundaries that also confine cerebellar neurons into a topographic circuit map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10(9):670–81. Epub 2009/08/21.

    Article  CAS  PubMed  Google Scholar 

  2. Reeber SL, Loeschel CA, Franklin A, Sillitoe RV. Establishment of topographic circuit zones in the cerebellum of scrambler mutant mice. F Neural Circ. 2013;7:122. Epub 2013/07/26.

    Google Scholar 

  3. Reeber SL, White JJ, George-Jones NA, Sillitoe RV. Architecture and development of olivocerebellar circuit topography. F Neural Circ. 2012;6:115. Epub 2013/01/08.

    Google Scholar 

  4. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304(5667):110–5. Epub 2004/04/06.

    Article  CAS  PubMed  Google Scholar 

  5. Wang F, Xu Q, Wang W, Takano T, Nedergaard M. Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci U S A. 2012;109(20):7911–6. Epub 2012/05/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muller T, Kettenmann H. Physiology of Bergmann glial cells. Int Rev Neurobiol. 1995;38:341–59. Epub 1995/01/01.

    Article  CAS  PubMed  Google Scholar 

  7. Karadottir R, Hamilton NB, Bakiri Y, Attwell D. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci. 2008;11(4):450–6. Epub 2008/03/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bellamy TC. Interactions between Purkinje neurones and Bergmann glia. Cerebellum. 2006;5(2):116–26. Epub 2006/07/05.

    Article  PubMed  Google Scholar 

  9. Hatten ME. Expansion of CNS precursor pools: a new role for Sonic Hedgehog. Neuron. 1999;22(1):2–3. Epub 1999/02/23.

    Article  CAS  PubMed  Google Scholar 

  10. Li K, Leung AW, Guo Q, Yang W, Li JY. Shp2-dependent ERK signaling is essential for induction of Bergmann glia and foliation of the cerebellum. J Neurosci: Off J Soc Neurosci. 2014;34(3):922–31. Epub 2014/01/17.

    Article  CAS  Google Scholar 

  11. Qiu Z, Cang Y, Goff SP. Abl family tyrosine kinases are essential for basement membrane integrity and cortical lamination in the cerebellum. J Neurosci: Off J Soc Neurosci. 2010;30(43):14430–9. Epub 2010/10/29.

    Article  CAS  Google Scholar 

  12. Saab AS, Neumeyer A, Jahn HM, Cupido A, Simek AA, Boele HJ, et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science. 2012;337(6095):749–53. Epub 2012/07/07.

    Article  CAS  PubMed  Google Scholar 

  13. Nishiyama H, Fukaya M, Watanabe M, Linden DJ. Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum. Neuron. 2007;56(3):472–87. Epub 2007/11/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996;381(6581):415–21. Epub 1996/05/30.

    Article  CAS  PubMed  Google Scholar 

  15. Sillitoe RV, Stephen D, Lao Z, Joyner AL. Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci: Off J Soc Neurosci. 2008;28(47):12150–62. Epub 2008/11/21.

    Article  CAS  Google Scholar 

  16. Reeber SL, Gebre SA, Sillitoe RV. Fluorescence mapping of afferent topography in three dimensions. Brain Struct Funct. 2011;216(3):159–69. Epub 2011/03/10.

    Article  PubMed  Google Scholar 

  17. Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol. 2000;416(3):383–97. Epub 1999/12/22.

    Article  CAS  PubMed  Google Scholar 

  18. Bignami A, Dahl D. The development of Bergmann glia in mutant mice with cerebellar malformations: reeler, staggerer and weaver. Immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol. 1974;155(2):219–29. Epub 1974/05/15.

    Article  CAS  PubMed  Google Scholar 

  19. Yuasa S. Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat Embryol. 1996;194(3):223–34. Epub 1996/09/01.

    Article  CAS  Google Scholar 

  20. Sillitoe RV, Gopal N, Joyner AL. Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections. Neuroscience. 2009;162(3):574–88. Epub 2009/01/20.

    Article  CAS  PubMed  Google Scholar 

  21. Sillitoe RV, Chung SH, Fritschy JM, Hoy M, Hawkes R. Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci: Off J Soc Neurosci. 2008;28(11):2820–6. Epub 2008/03/14.

    Article  CAS  Google Scholar 

  22. Larsell O. The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J Comp Neurol. 1952;97(2):281–356. Epub 1952/10/01.

    Article  CAS  PubMed  Google Scholar 

  23. Larsell O, Jansen J. The comparative anatomy and histology of the cerebellum. Minneapolis: University of Minnesota Press; 1967.

    Google Scholar 

  24. Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412(1):95–111. Epub 1999/08/10.

    Article  CAS  PubMed  Google Scholar 

  25. Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77. Epub 2007/05/18.

    Article  CAS  PubMed  Google Scholar 

  26. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76. Epub 2006/12/08.

    Article  CAS  PubMed  Google Scholar 

  27. Akiyama K, Nakanishi S, Nakamura NH, Naito T. Gene expression profiling of neuropeptides in mouse cerebellum, hippocampus, and retina. Nutrition. 2008;24(9):918–23. Epub 2008/07/30.

    Article  CAS  PubMed  Google Scholar 

  28. Dubois CJ, Ramamoorthy P, Whim MD, Liu SJ. Activation of NPY type 5 receptors induces a long-lasting increase in spontaneous GABA release from cerebellar inhibitory interneurons. J Neurophysiol. 2012;107(6):1655–65. Epub 2011/12/23.

    Article  CAS  PubMed  Google Scholar 

  29. Liu HZ, Li XY, Tong JJ, Qiu ZY, Zhan HC, Sha JN, et al. Duck cerebellum participates in regulation of food intake via the neurotransmitters serotonin and neuropeptide Y. Nutr Neurosci. 2008;11(5):200–6. Epub 2008/09/11.

    Article  CAS  PubMed  Google Scholar 

  30. Ueyama T, Houtani T, Nakagawa H, Baba K, Ikeda M, Yamashita T, et al. A subpopulation of olivocerebellar projection neurons express neuropeptide Y. Brain Res. 1994;634(2):353–7. Epub 1994/01/21.

    Article  CAS  PubMed  Google Scholar 

  31. Morara S, Marcoti W, Provini L, Rosina A. Neuropeptide Y (NPY) expression is up-regulated in the rat inferior olive during development. Neuroreport. 1997;8(17):3743–7. Epub 1998/01/14.

    Article  CAS  PubMed  Google Scholar 

  32. Allen Mouse Brain Atlas. Allen Institute for Brain Science; 2014 [updated 2014; cited 2014]; Available from: http://mouse.brain-map.org/.

  33. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci. 2005;8(7):873–80. Epub 2005/06/21.

    Article  CAS  PubMed  Google Scholar 

  34. Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol. 2006;494(2):215–27. Epub 2005/12/02.

    Article  CAS  PubMed  Google Scholar 

  35. Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502(5):857–71. Epub 2007/04/17.

    Article  PubMed  Google Scholar 

  36. Fujita H, Morita N, Furuichi T, Sugihara I. Clustered fine compartmentalization of the mouse embryonic cerebellar cortex and its rearrangement into the postnatal striped configuration. J Neurosci: Off J Soc Neurosci. 2012;32(45):15688–703. Epub 2012/11/09.

    Article  CAS  Google Scholar 

  37. White JJ, Sillitoe RV. Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression. Front Neuroanat. 2013;7:9. Epub 2013/05/16.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Expression of heat-shock protein Hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J Comp Neurol. 2001;429(1):7–21. Epub 2000/11/22.

    Article  CAS  PubMed  Google Scholar 

  39. Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R. A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive Purkinje cell stripes in the mouse cerebellum. J Comp Neurol. 2009;517(4):524–38. Epub 2009/10/02.

    Article  CAS  PubMed  Google Scholar 

  40. Larouche M, Hawkes R. From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum. 2006;5(2):77–88. Epub 2006/07/05.

    Article  CAS  PubMed  Google Scholar 

  41. Sillitoe RV, Hawkes R. Zones and stripes: development of cerebellar topography. In: Manto M-U, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New Yor: Springer; 2013. p. p. 43–59.

    Chapter  Google Scholar 

  42. Santos-Carvalho A, Alvaro AR, Martins J, Ambrosio AF, Cavadas C. Emerging novel roles of neuropeptide Y in the retina: from neuromodulation to neuroprotection. Prog Neurobiol. 2014;112:70–9. Epub 2013/11/05.

    Article  CAS  PubMed  Google Scholar 

  43. Attwell PJ, Rahman S, Ivarsson M, Yeo CH. Cerebellar cortical AMPA-kainate receptor blockade prevents performance of classically conditioned nictitating membrane responses. J Neurosci: Off J Soc Neurosci. 1999;19(24):RC45. Epub 1999/12/14.

    Article  CAS  Google Scholar 

  44. Schonewille M, Luo C, Ruigrok TJ, Voogd J, Schmolesky MT, Rutteman M, et al. Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol. 2006;497(4):670–82. Epub 2006/06/02.

    Article  PubMed  Google Scholar 

  45. Horn KM, Pong M, Gibson AR. Functional relations of cerebellar modules of the cat. J Neurosci: Off J Soc Neurosci. 2010;30(28):9411–23. Epub 2010/07/16.

    Article  CAS  Google Scholar 

  46. Mostofi A, Holtzman T, Grout AS, Yeo CH, Edgley SA. Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci: Off J Soc Neurosci. 2010;30(26):8920–34. Epub 2010/07/02.

    Article  CAS  Google Scholar 

  47. Scott TG. A unique pattern of localization within the cerebellum. Nature. 1963;200:793. Epub 1963/11/23.

    Article  CAS  PubMed  Google Scholar 

  48. Bailly Y, Schoen SW, Delhaye-Bouchaud N, Kreutzberg GW, Mariani J. 5′-nucleotidase activity as a synaptic marker of parasagittal compartmentation in the mouse cerebellum. J Neurocytol. 1995;24(11):879–90. Epub 1995/11/01.

    Article  CAS  PubMed  Google Scholar 

  49. O’Hearn E, Molliver ME. Degeneration of Purkinje cells in parasagittal zones of the cerebellar vermis after treatment with ibogaine or harmaline. Neuroscience. 1993;55(2):303–10. Epub 1993/07/01.

    Article  PubMed  Google Scholar 

  50. Nakki R, Koistinaho J, Sharp FR, Sagar SM. Cerebellar toxicity of phencyclidine. J Neurosci. 1995;15(3 Pt 2):2097–108. Epub 1995/03/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fukuda K, Aihara N, Sagar SM, Sharp FR, Pitts LH, Honkaniemi J, et al. Purkinje cell vulnerability to mild traumatic brain injury. J Neurotrauma. 1996;13(5):255–66. Epub 1996/05/01.

    Article  CAS  PubMed  Google Scholar 

  52. Mautes AE, Fukuda K, Noble LJ. Cellular response in the cerebellum after midline traumatic brain injury in the rat. Neurosci Lett. 1996;214(2–3):95–8. Epub 1996/08/23.

    Article  CAS  PubMed  Google Scholar 

  53. O’Hearn E, Molliver ME. The olivocerebellar projection mediates ibogaine-induced degeneration of Purkinje cells: a model of indirect, trans-synaptic excitotoxicity. J Neurosci. 1997;17(22):8828–41. Epub 1997/11/14.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70(6):473–507. Epub 2003/10/22.

    Article  CAS  PubMed  Google Scholar 

  55. Williams BL, Yaddanapudi K, Hornig M, Lipkin WI. Spatiotemporal analysis of purkinje cell degeneration relative to parasagittal expression domains in a model of neonatal viral infection. J Virol. 2007;81(6):2675–87. Epub 2006/12/22.

    Article  CAS  PubMed  Google Scholar 

  56. Igarashi T, Potts MB, Noble-Haeusslein LJ. Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. Exp Neurol. 2007;203(1):258–68. Epub 2006/10/19.

    Article  PubMed  Google Scholar 

  57. Muller T, Moller T, Neuhaus J, Kettenmann H. Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia. 1996;17(4):274–84. Epub 1996/08/01.

    Article  CAS  PubMed  Google Scholar 

  58. Ruigrok TJ. Ins and outs of cerebellar modules. Cerebellum. 2011;10(3):464–74. Epub 2010/03/17.

    Article  PubMed  Google Scholar 

  59. Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72(5):295–339. Epub 2004/05/26.

    Article  CAS  PubMed  Google Scholar 

  60. Sotelo C, Chedotal A. Development of the olivocerebellar system: migration and formation of cerebellar maps. Prog Brain Res. 2005;148:1–20. Epub 2005/01/22.

    Article  PubMed  Google Scholar 

  61. Sillitoe RV, Vogel MW, Joyner AL. Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci: Off J Soc Neurosci. 2010;30(30):10015–24. Epub 2010/07/30.

    Article  CAS  Google Scholar 

  62. Lin JC, Cepko CL. Biphasic dispersion of clones containing Purkinje cells and glia in the developing chick cerebellum. Dev Biol. 1999;211(2):177–97. Epub 1999/07/09.

    Article  CAS  PubMed  Google Scholar 

  63. Armstrong CL, Hawkes R. Pattern formation in the cerebellar cortex. Biochim Biol Cell. 2000;78(5):551–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Baylor College of Medicine and Texas Children’s Hospital (Houston, TX). RVS is supported by the Caroline Wiess Law Fund for Research in Molecular Medicine, a BCM IDDRC Project Development Award, and by BCM IDDRC Grant Number 5P30HD024064 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development and by Grant Number C06RR029965 from the National Center for Research Resources. The BCM IDDRC Neuropathology Core conducted some of the staining. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Conflicts of Interest

We have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy V. Sillitoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reeber, S.L., Arancillo, M. & Sillitoe, R.V. Bergmann Glia are Patterned into Topographic Molecular Zones in the Developing and Adult Mouse Cerebellum. Cerebellum 17, 392–403 (2018). https://doi.org/10.1007/s12311-014-0571-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0571-6

Keywords

Navigation