Skip to main content
Log in

The Contribution of Extrasynaptic Signaling to Cerebellar Information Processing

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The diversity of synapses within the simple modular structure of the cerebellum has been crucial for study of the phasic extrasynaptic signaling by fast neurotransmitters collectively referred to as “spillover.” Additionally, the accessibility of cerebellar components for in vivo recordings and their recruitment by simple behaviors or sensory stimuli has allowed for both direct and indirect demonstrations of the effects of transmitter spillover in the intact brain. The continued study of spillover in the cerebellum not only promotes our understanding of information transfer through cerebellar structures but also how extrasynaptic signaling may be regulated and interpreted throughout the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Scanziani M, Malenka R, Nicoll R. Role of intercellular interactions in heterosynaptic long-term depression. Nature. 1996;380(6573):446–50.

    Article  CAS  PubMed  Google Scholar 

  2. Asztely F, Erdemli G, Kullmann D. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron. 1997;18(2):281–93.

    Article  CAS  PubMed  Google Scholar 

  3. Scanziani M. GABA spillover activates postsynaptic GABA (B) receptors to control rhythmic hippocampal activity. Neuron. 2000;25(3):673–81.

    Article  CAS  PubMed  Google Scholar 

  4. Isaacson JS. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb. Neuron. 1999;23(2):377–84.

    Article  CAS  PubMed  Google Scholar 

  5. Harris AZ, Pettit DL. Recruiting extrasynaptic NMDA receptors augments synaptic signaling. J Neurophysiol. 2008;99(2):524–33.

    Article  CAS  PubMed  Google Scholar 

  6. Chalifoux JR, Carter AG. Glutamate spillover promotes the generation of NMDA spikes. J Neurosci. 2011;31(45):16435–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Szapiro G, Barbour B. Parasynaptic signalling by fast neurotransmitters: the cerebellar cortex. Neuroscience. 2009;162(3):644–55.

    Article  CAS  PubMed  Google Scholar 

  8. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA (A) receptors. Nat Rev Neurosci. 2005;6(3):215–29.

    Article  CAS  PubMed  Google Scholar 

  9. Sah P, Hestrin S, Nicoll R. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science. 1989;246(4931):815–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rothstein J, Patel S, Regan M, Haenggeli C, Huang Y, Bergles D, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7.

    Article  CAS  PubMed  Google Scholar 

  11. Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med. 2000;6(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  12. Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 2011;17(10):1269–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Arnth-Jensen N, Jabaudon D, Scanziani M. Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat Neurosci. 2002;5(4):325–31.

    Article  CAS  PubMed  Google Scholar 

  14. Kullmann DM, Erdemli G, Asztely F. LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron. 1996;17(3):461–74.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell S, Silver R. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature. 2000;404(6777):498–502.

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell S, Silver R. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J Neurosci. 2000;20(23):8651–8.

    CAS  PubMed  Google Scholar 

  17. DiGregorio D, Nusser Z, Silver R. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 2002;35(3):521–33.

    Article  CAS  PubMed  Google Scholar 

  18. Otis T, Wu Y, Trussell L. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J Neurosci. 1996;16(5):1634–44.

    CAS  PubMed  Google Scholar 

  19. Overstreet L, Kinney G, Liu Y, Billups D, Slater N. Glutamate transporters contribute to the time course of synaptic transmission in cerebellar granule cells. J Neurosci. 1999;19(21):9663–73.

    CAS  PubMed  Google Scholar 

  20. Diamond J. Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci. 2001;21(21):8328–38.

    CAS  PubMed  Google Scholar 

  21. Jakab RL, Hamori J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol (Berl). 1988;179(1):81–8.

    Article  CAS  Google Scholar 

  22. Xu-Friedman M, Regehr W. Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J Neurosci. 2003;23(6):2182–92.

    CAS  PubMed  Google Scholar 

  23. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature. 2007;450(7173):1245–8.

    Article  CAS  PubMed  Google Scholar 

  24. Silver R, Colquhoun D, Cull-Candy S, Edmonds B. Deactivation and desensitization of non-NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells. J Physiol. 1996;493(Pt 1):167–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Nielsen T, DiGregorio D, Silver R. Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron. 2004;42(5):757–71.

    Article  CAS  PubMed  Google Scholar 

  26. Sargent P, Saviane C, Nielsen T, DiGregorio D, Silver R. Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J Neurosci. 2005;25(36):8173–87.

    Article  CAS  PubMed  Google Scholar 

  27. DiGregorio D, Rothman J, Nielsen T, Silver R. Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J Neurosci. 2007;27(31):8344–57.

    Article  CAS  PubMed  Google Scholar 

  28. Cathala L, Misra C, Cull-Candy S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci. 2000;20(16):5899–905.

    CAS  PubMed  Google Scholar 

  29. Cathala L, Brickley S, Cull-Candy S, Farrant M. Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J Neurosci. 2003;23(14):6074–85.

    CAS  PubMed  Google Scholar 

  30. Schwartz EJ, Rothman JS, Dugue GP, Diana M, Rousseau C, Silver RA, et al. NMDA receptors with incomplete Mg (2) (+) block enable low-frequency transmission through the cerebellar cortex. J Neurosci. 2012;32(20):6878–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Thomsen LB, Jorntell H, Midtgaard J. Presynaptic calcium signalling in cerebellar mossy fibres. Front Neural Circ. 2010;4:1.

    Google Scholar 

  32. Rossi DJ, Hamann M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA (A) receptors and glomerular geometry. Neuron. 1998;20(4):783–95.

    Article  CAS  PubMed  Google Scholar 

  33. Hamann M, Rossi DJ, Attwell D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron. 2002;33(4):625–33.

    Article  CAS  PubMed  Google Scholar 

  34. Crowley JJ, Fioravante D, Regehr WG. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration. Neuron. 2009;63(6):843–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Harvey RJ, Napper RM. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J Comp Neurol. 1988;274(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  36. Palay SL, Chan-Palay V. Cerebellar cortex: cytology and organization. 1974:348

  37. Napper RM, Harvey RJ. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol. 1988;274(2):168–77.

    Article  CAS  PubMed  Google Scholar 

  38. Bender V, Pugh J, Jahr C. Presynaptically expressed long-term potentiation increases multivesicular release at parallel fiber synapses. J Neurosci. 2009;29(35):10974–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nahir B, Jahr CE. Activation of extrasynaptic NMDARs at individual parallel fiber-molecular layer interneuron synapses in cerebellum. J Neurosci. 2013;33(41):16323–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Foster KA, Crowley JJ, Regehr WG. The influence of multivesicular release and postsynaptic receptor saturation on transmission at granule cell to Purkinje cell synapses. J Neurosci. 2005;25(50):11655–65.

    Article  CAS  PubMed  Google Scholar 

  41. Xu-Friedman M, Harris K, Regehr W. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci. 2001;21(17):6666–72.

    CAS  PubMed  Google Scholar 

  42. Xu-Friedman M, Regehr W. Probing fundamental aspects of synaptic transmission with strontium. J Neurosci. 2000;20(12):4414–22.

    CAS  PubMed  Google Scholar 

  43. Valera AM, Doussau F, Poulain B, Barbour B, Isope P. Adaptation of granule cell to Purkinje cell synapses to high-frequency transmission. J Neurosci. 2012;32(9):3267–80.

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt H, Brachtendorf S, Arendt O, Hallermann S, Ishiyama S, Bornschein G, et al. Nanodomain coupling at an excitatory cortical synapse. Curr Biol. 2013;23(3):244–9.

    Article  CAS  PubMed  Google Scholar 

  45. Marcaggi P, Billups D, Attwell D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J Physiol. 2003;552(Pt 1):89–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tempia F, Miniaci MC, Anchisi D, Strata P. Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J Neurophysiol. 1998;80(2):520–8.

    CAS  PubMed  Google Scholar 

  47. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, et al. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science. 2000;288(5472):1832–5.

    Article  CAS  PubMed  Google Scholar 

  48. Brasnjo G, Otis T. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron. 2001;31(4):607–16.

    Article  CAS  PubMed  Google Scholar 

  49. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4(5):467–75.

    CAS  PubMed  Google Scholar 

  50. Takayasu Y, Iino M, Kakegawa W, Maeno H, Watase K, Wada K, et al. Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses. J Neurosci. 2005;25(38):8788–93.

    Article  CAS  PubMed  Google Scholar 

  51. Wadiche JI, Jahr CE. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci. 2005;8(10):1329–34.

    Article  CAS  PubMed  Google Scholar 

  52. Wadiche JI, Tzingounis AV, Jahr CE. Intrinsic kinetics determine the time course of neuronal synaptic transporter currents. Proc Natl Acad Sci U S A. 2006;103(4):1083–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Tsai M-C, Tanaka K, Overstreet-Wadiche L, Wadiche JI. Neuronal glutamate transporters regulate glial excitatory transmission. J Neurosci. 2012;32(5):1528–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Watanabe D, Nakanishi S. mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron. 2003;39(5):821–9.

    Article  CAS  PubMed  Google Scholar 

  55. Holtzman T, Sivam V, Zhao T, Frey O, van der Wal PD, de Rooij NF, et al. Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell-granule cell loops. J Physiol. 2011;589(Pt 15):3837–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA. Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 2010;67(3):435–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Carter A, Regehr W. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J Neurosci. 2000;20(12):4423–34.

    CAS  PubMed  Google Scholar 

  58. Clark B, Cull-Candy S. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J Neurosci. 2002;22(11):4428–36.

    CAS  PubMed  Google Scholar 

  59. Karakossian MH, Otis TS. Excitation of cerebellar interneurons by group I metabotropic glutamate receptors. J Neurophysiol. 2004;92(3):1558–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Collin T, Franconville R, Ehrlich BE, Llano I. Activation of metabotropic glutamate receptors induces periodic burst firing and concomitant cytosolic Ca2+ oscillations in cerebellar interneurons. J Neurosci. 2009;29(29):9281–91.

    Article  CAS  PubMed  Google Scholar 

  61. Stell BM, Rostaing P, Triller A, Marty A. Activation of presynaptic GABA (A) receptors induces glutamate release from parallel fiber synapses. J Neurosci. 2007;27(34):9022–31.

    Article  CAS  PubMed  Google Scholar 

  62. Pugh JR, Jahr CE. Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci. 2011;31(2):565–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Dellal SS, Luo R, Otis TS. GABAA receptors increase excitability and conduction velocity of cerebellar parallel fiber axons. J Neurophysiol. 2012;107(11):2958–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Dittman J, Regehr W. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci. 1996;16(5):1623–33.

    CAS  PubMed  Google Scholar 

  65. Dittman J, Regehr W. Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse. J Neurosci. 1997;17(23):9048–59.

    CAS  PubMed  Google Scholar 

  66. Marcaggi P, Attwell D. Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat Neurosci. 2005;8(6):776–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Marcaggi P, Attwell D. Short- and long-term depression of rat cerebellar parallel fibre synaptic transmission mediated by synaptic crosstalk. J Physiol. 2007;578(Pt 2):545–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Wadiche JI, Jahr CE. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 2001;32(2):301–13.

    Article  CAS  PubMed  Google Scholar 

  69. Rudolph S, Overstreet-Wadiche L, Wadiche JI. Desynchronization of multivesicular release enhances Purkinje cell output. Neuron. 2011;70(5):991–1004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Armstrong D, Rawson J. Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol Lond. 1979;289:425–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Schwarz C, Welsh J. Dynamic modulation of mossy fiber system throughput by inferior olive synchrony: a multielectrode study of cerebellar cortex activated by motor cortex. J Neurophysiol. 2001;86(5):2489–504.

    CAS  PubMed  Google Scholar 

  72. Otis T, Kavanaugh M, Jahr C. Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science. 1997;277(5331):1515–8.

    Article  CAS  PubMed  Google Scholar 

  73. Dehnes Y, Chaudhry F, Ullensvang K, Lehre K, Storm-Mathisen J, Danbolt N. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;18(10):3606–19.

    CAS  PubMed  Google Scholar 

  74. Dzubay J, Otis T. Climbing fiber activation of metabotropic glutamate receptors on cerebellar purkinje neurons. Neuron. 2002;36(6):1159–67.

    Article  CAS  PubMed  Google Scholar 

  75. Takayasu Y, Iino M, Shimamoto K, Tanaka K, Ozawa S. Glial glutamate transporters maintain one-to-one relationship at the climbing fiber-Purkinje cell synapse by preventing glutamate spillover. J Neurosci. 2006;26(24):6563–72.

    Article  CAS  PubMed  Google Scholar 

  76. Lin SC, Huck JH, Roberts JD, Macklin WB, Somogyi P, Bergles DE. Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron. 2005;46(5):773–85.

    Article  CAS  PubMed  Google Scholar 

  77. Kollo M, Holderith NB, Nusser Z. Novel subcellular distribution pattern of A-type K + channels on neuronal surface. J Neurosci. 2006;26(10):2684–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Szapiro G, Barbour B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci. 2007;10(6):735–42.

    Article  CAS  PubMed  Google Scholar 

  79. Jörntell H, Ekerot C-F. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34(5):797–806.

    Article  PubMed  Google Scholar 

  80. Jörntell H, Ekerot C-F. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci. 2003;23(29):9620–31.

    PubMed  Google Scholar 

  81. Mathews PJ, Lee KH, Peng Z, Houser CR, Otis TS. Effects of climbing fiber driven inhibition on Purkinje neuron spiking. J Neurosci. 2012;32(50):17988–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Ozden I, Sullivan MR, Lee HM, Wang SS-H. Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons. J Neurosci. 2009;29(34):10463–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Schultz SR, Kitamura K, Post-Uiterweer A, Krupic J, Häusser M. Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. J Neurosci. 2009;29(25):8005–15.

    Article  CAS  PubMed  Google Scholar 

  84. Coddington LT, Rudolph S, Vande Lune P, Overstreet-Wadiche L, Wadiche JI. Spillover-mediated feedforward inhibition functionally segregates interneuron activity. Neuron. 2013;78(6):1050–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Jirenhed DA, Bengtsson F, Jorntell H. Parallel fiber and climbing fiber responses in rat cerebellar cortical neurons in vivo. Front Syst Neurosci. 2013;7:16.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Bloedel JR, Ebner TJ, Yu QX. Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. J Neurophysiol. 1983;50(1):220–39.

    CAS  PubMed  Google Scholar 

  87. Bosman LW, Koekkoek SK, Shapiro J, Rijken BF, Zandstra F, van der Ende B, et al. Encoding of whisker input by cerebellar Purkinje cells. J Physiol. 2010;588(Pt 19):3757–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Barmack NH, Yakhnitsa V. Cerebellar climbing fibers modulate simple spikes in Purkinje cells. J Neurosci. 2003;23(21):7904–16.

    CAS  PubMed  Google Scholar 

  89. Barmack NH, Yakhnitsa V. Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum. J Neurosci. 2011;31(27):9824–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron. 2013;78(4):700–13.

    Article  CAS  PubMed  Google Scholar 

  91. Uusisaari M, De Schutter E. The mysterious microcircuitry of the cerebellar nuclei. J Physiol. 2011;589(Pt 14):3441–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31(5):785–97.

    CAS  PubMed  Google Scholar 

  93. Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J Neurophysiol. 1970;33(4):527–36.

    CAS  PubMed  Google Scholar 

  94. Person AL. Raman IM. Nature: Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei; 2011.

    Google Scholar 

  95. Pugh JR, Raman IM. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51(1):113–23.

    Article  CAS  PubMed  Google Scholar 

  96. Person AL, Raman IM. Deactivation of L-type Ca current by inhibition controls LTP at excitatory synapses in the cerebellar nuclei. Neuron. 2010;66(4):550–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Telgkamp P, Padgett DE, Ledoux VA, Woolley CS, Raman IM. Maintenance of high-frequency transmission at purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron. 2004;41(1):113–26.

    Article  CAS  PubMed  Google Scholar 

  98. McCormick DA, Thompson RF. Cerebellum: essential involvement in the classically conditioned eyelid response. Science. 1984;223(4633):296–9.

    Article  CAS  PubMed  Google Scholar 

  99. Medina JF, Nores WL, Ohyama T, Mauk MD. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol. 2000;10(6):717–24.

    Article  CAS  PubMed  Google Scholar 

  100. Pugh JR, Raman IM. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci. 2008;28(42):10549–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Zhang W, Linden DJ. Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. J Neurosci. 2006;26(26):6935–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Linda Overstreet-Wadiche for her help and comments.

Conflict of Interest

The authors have no conflicts of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques I. Wadiche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coddington, L.T., Nietz, A.K. & Wadiche, J.I. The Contribution of Extrasynaptic Signaling to Cerebellar Information Processing. Cerebellum 13, 513–520 (2014). https://doi.org/10.1007/s12311-014-0554-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0554-7

Keywords

Navigation