Skip to main content

Advertisement

Log in

The Role of Thyroid Hormone on Cerebellar Development

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Thyroid hormone plays a crucial role in cerebellar development. Deficiency of thyroid hormone results in abnormal cerebellar growth and differentiation. In rodent, thyroid hormone mainly affects cerebellar development during the first 2 weeks of postnatal life. Thyroid hormone replacement after such critical period cannot fully rescue abnormal cerebellar development induced by perinatal hypothyroidism. Thyroid hormone receptor (TR) is a ligand-regulated transcription factor that binds to a specific DNA sequence called thyroid-hormone-responsive element. TR recruits various coregulators such as coactivator and corepressor in a ligand-dependent manner to regulate transcription of target genes. In cerebellum, at least three different TRs are expressed in a cell-specific manner. TRβ1 is expressed predominantly in the Purkinje cell, whereas TRα1 in other subset of neurons. Although these TRs are widely expressed during the cerebellar development and their levels are greater in adult, the expression of many thyroid-hormone-responsive genes is altered by thyroid hormone status only during early postnatal critical period. Not only the expression levels of TRs but also those of cofactors and other nuclear receptors may play a role in regulating thyroid hormone sensitivity in the developing cerebellum. In this article, the effect of thyroid hormone on morphological development of cerebellum and molecular mechanisms of thyroid hormone action are introduced. Furthermore, possible involvement of other nuclear receptors and cofactors in thyroid hormone action in the developing cerebellum is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128

    Article  PubMed  CAS  Google Scholar 

  2. Koibuchi N, Jingu H, Iwasaki T, Chin WW (2003) Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2:279–289

    Article  PubMed  CAS  Google Scholar 

  3. Legrand J (1979) Morphogenetic actions of thyroid hormones. Trends Neurosci 2:234–236

    Article  Google Scholar 

  4. Nicholson JL, Altman J (1972) The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res 44:25–36

    Article  PubMed  CAS  Google Scholar 

  5. Nicholson JL, Altman J (1972) Synaptogenesis in the rat cerebellum: effects of early hypo- and hyperthyroidism. Science 176:530–532

    Article  PubMed  CAS  Google Scholar 

  6. Nicholson JL, Altman J (1972) The effects of early hypo- and hyperthyroidism on development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res 44:13–23

    Article  PubMed  CAS  Google Scholar 

  7. Balázs R, Brooksbandk BWL, Patel AJ, Johnson AL, Wilson DA (1971) Incorporation of [35S] sulfate into brain constituents during development and the effects of thyroid hormone on myelination. Brain Res 30:273–293

    Article  PubMed  Google Scholar 

  8. Hajós F, Patel AJ, Balázs R (1973) Effect of thyroid deficiency on the synaptic organization of the rat cerebellar cortex. Brain Res 50:387–401

    Article  PubMed  Google Scholar 

  9. Bernal J (2005) The significance of thyroid hormone transporter in the brain. Endocrinology 146:1698–1700

    Article  PubMed  CAS  Google Scholar 

  10. Calvo R, Obregón MJ, Ruiz de Oña C, Escobar del Rey F, Morreale de Escobar G (1990) Congenital hypothyroidism, as studied in rats. J Clin Invest 86:889–899

    Article  PubMed  CAS  Google Scholar 

  11. Bradley DJ, Towle HC, Young WS (1992) Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system. J Neurosci 12:2288–2302

    PubMed  CAS  Google Scholar 

  12. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    PubMed  CAS  Google Scholar 

  13. Koibuchi N, Yamaoka S, Chin WW (2001) Effects of altered thyroid status in neurotrophin gene expression during postnatal development of the mouse cerebellum. Thyroid 11:205–210

    Article  PubMed  CAS  Google Scholar 

  14. Misiti S, Koibuchi N, Bei M, Farsetti A, Chin WW (1999) Expression of steroid receptor coactivator-1 mRNA in the developing mouse embryo: a possible role in olfactory epithelium development. Endocrinology 140:1957–1960

    Article  PubMed  CAS  Google Scholar 

  15. Martinez de Arrieta C, Koibuchi N, Chin WW (2000) Coactivator and corepressor gene expression in rat cerebellum during postnatal development and the effect of altered thyroid status. Endocrinology 141:1693–1698

    Article  PubMed  CAS  Google Scholar 

  16. Yousefi B, Jingu H, Ohta M, Umezu M, Koibuchi N (2005) Postnatal changes of steroid receptor coactivator-1 immunoreactivity in rat cerebellar cortex. Thyroid 15:314–319

    Article  PubMed  CAS  Google Scholar 

  17. Nishihara E, Yoshida-Komiya H, Chan CS, Liao L, Davis RL, O'Malley BW, Xu J (2003) SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci 23:213–222

    PubMed  CAS  Google Scholar 

  18. Messer A, Maskin P, Snodgrass GL (1984) Effects of triiodothyronine (T3) on the development of rat cerebellar cells in culture. Int J Dev Neurosci 2:277–285

    Article  CAS  Google Scholar 

  19. Thompson CC, Bottcher M (1997) The product of a thyroid hormone-responsive gene interacts with thyroid hormone receptors. Proc Natl Acad Sci U S A 94:8527–8532

    Article  PubMed  CAS  Google Scholar 

  20. Iwasaki T, Koibuchi N, Chin WW (2005) Synovial sarcoma translocation (SYT) encodes a nuclear receptor coactivator. Endocrinology 146:3892–3899

    Article  PubMed  CAS  Google Scholar 

  21. Qiu C-H, Shimokawa N, Iwasaki T, Parhar IS, Koibuchi N (2007) Alteration of cerebellar neurotrophin messenger ribonucleic acids and the lack of thyroid hormone receptor augmentation by staggerer-type retinoic acid receptor-related orphan receptor-α mutation. Endocrinology 148:1745–1753

    Article  PubMed  CAS  Google Scholar 

  22. Koibuchi N, Chin WW (1998) RORα gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation. Endocrinology 139:2335–2341

    Article  PubMed  CAS  Google Scholar 

  23. Koibuchi N, Liu Y, Fukuda H, Takeshita A, Yen PM, Chin WW (1999) RORα augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology 140:1356–1364

    Article  PubMed  CAS  Google Scholar 

  24. Koibuchi N, Iwasaki T (2006) Regulation of brain development by thyroid hormone and its modulation by environmental chemicals. Endocrine J 53:295–303

    Article  CAS  Google Scholar 

  25. Kimura-Kuroda J, Nagata I, Kuroda Y (2005) Hydroxylated metabolites of polychlorinated biphenyls inhibit thyroid-hormone-dependent extension of cerebellar Purkinje cell dendrites. Brain Res Dev Brain Res 154:259–263

    Article  PubMed  CAS  Google Scholar 

  26. Iwasaki T, Miyazaki W, Takeshita A, Kuroda Y, Koibuchi N (2002) Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem Biophys Res Commun 299:384–388

    Article  PubMed  CAS  Google Scholar 

  27. Miyazaki W, Iwasaki T, Takeshita A, Kuroda Y, Koibuchi N (2004) Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J Biol Chem 279:18195–18202

    Article  PubMed  CAS  Google Scholar 

  28. Miyazaki W, Iwasaki T, Takeshita A, Tohyama C, Koibuchi N (2008) Identification of functional domain of thyroid hormone receptor responsible for polychlorinated biphenyl-mediated suppression of its action in vitro. Environ Health Perspect 116:1231–1236

    Article  PubMed  CAS  Google Scholar 

  29. Göthe S, Wang Z, Ng L, Kindblom JM, Campos Barros A, Ohlsson C, Vennström B, Forrest D (1999) Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Gene Dev 13:1329–1341

    Article  PubMed  Google Scholar 

  30. Hashimoto K, Curty FH, Borges PP, Lee CE, Abel EDA, Elmquist JK, Cohen RN, Wondisford FE (2001) An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci U S A 98:3998–4003

    Article  PubMed  CAS  Google Scholar 

  31. Morte B, Manzano J, Scanlan T, Vennström B, Bernal J (2001) Deletion of the thyroid hormone receptor α1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci U S A 99:3985–3989

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, N. The Role of Thyroid Hormone on Cerebellar Development. Cerebellum 7, 530–533 (2008). https://doi.org/10.1007/s12311-008-0069-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0069-1

Keywords

Navigation